Приближение заданного распределения поверхностного тока для расчета прямоугольных микрополосковых антенн. Нечаев Ю.Б. - 8 стр.

UptoLike

Составители: 

AgZf_gZl_evdZ`^h]hba^\mokeZ]Z_fuoih^ugl_]jZevghcnmgdpbb\fh`_l
h[jZsZlvky \ gmev ijb g_dhlhjuo dhfie_dkguo agZq_gbyo
r
χ
 Wlb ihexku
ih^ugl_]jZevghcnmgdpbbkhhl\_lkl\mxlihklhyggufjZkijhkljZg_gbykh[kl\_gg u ob
\ul_dZxsbo\heg^bwe_dljbq_kdh]hkehygZwdjZg_<ul_dZxsb_\hegu_kebhgb_klv
ijb jZkijhkljZg_gbb \ ih^eh`d_ l_jyxl wg_j]bx aZ kq_l baemq_gby \ k\h[h^gh_
ijhkljZgkl\h Fhsghklv wlh]h baemq_gby \oh^bl \ lm qZklv Zdlb\ghc fhsghklb
dhlhjZy h[hagZq_gZ
R
P
b ihemq_gZ bgl_]jbjh\Zgb_f ih \b^bfhc h[eZklb
χ
(22).
Kh[kl\_ggu_ \hegu ih^eh`db bf_xl ^_ckl\bl_evgu_ ihklhyggu_ jZkijhkljZg_gby
jZkiheh`_ggu_ lhevdh \ dhevp_
µε
χ
kk
r
<<
gZ iehkdhklb
(
)
yx
χ
χ
, ,
ho\Zlu\Zxs_f\b^bfmxh[eZklv
χ
:
k
r
<<
χ
0 .
<ih^eh`d_fh]mlkms_kl\h\Zlv^\ZlbiZkh[kl\_ggu o\hegL?
-
bLF
-
\hegu
k^bki_jkbhg gufbmjZ\g_gbyfb
0
122
=
γγγ
hctgi
L?
-
\hegu
(25)
0
221
=
γγγε
hctgi
LF
-
\hegu
Gbarbflbihf\hegug_bf_xsbfhlk_qdby\ey_lkyi_j\ZyLFfh^Z
>bki_jkbhggh_mjZ\g_gb_^eyLF
-
\hegu\[_ajZaf_jguo\_ebqbgZobf__l\b^
01
222
=
χ
ε
χ
ε
χ
ε
hktg
. (27)
J_r_gby ^bki_jkb hggh]h mjZ\g_gby h[hagZqbf
p
χ
,
max
...,3,2,1
pp
=
.
MjZ\g_gb_  bf__l ih djZcg_c f_j_ h^gh j_r_gb_ J_r_gby e_]dh gZoh^blv
qbke_gghki hfhsv xW<F>eylh]hqlh[umf_gvrblvihl_jbwg_j]bbgZ\ha[m`^_gb_
ih\_joghklguo\heg\fbdjhihehkdh\uoZgl_ggZobkihevamxlkyih^eh`dbbf_xsb_
fZemx we_dljbq_kdmx lhesbgm < wlhf kemqZ_ \ ih^eh`d_ jZkijhkljZgy_lky lhevdh
h^gZ ih\_joghklgZy \hegZ Fh`gh ihemqblv ijb[eb`_ggh_ agZq_gb_ __ ihklhygghc
jZkijhkljZg_gbyZgZeblbq_kdbbbkihevah\Zlv_]h\dZq_kl\_gZqZevgh]hijb[eb`_gby
ijb qbke_gghf j_r_gbb mjZ\g_gby  IheZ]Zy
1
2
<<
χ
ε
hk
aZf_gbf \ 
lZg]_gk _]h i_j\uf qe_ghf jZaeh`_gby \ kl_i_gghc jy^ b [m^_f bkdZlv j_r_gb_
ijb[eb`_ggh]hmjZ\g_gby\\b^_
δ
χ
+=
1
E_]dhihdZaZlvqlh
()()
21
2
εεδ
hk .
LZdbf h[jZahf ijb[eb`_ggh_ j_r_gb_ ^bki_jkbhggh]h mjZ\g_gby  \ kemqZ_
lhgdhcih^eh`dbbf__l\b^
       AgZf_gZl_evdZ`^h]hba^\mokeZ]Z_fuoih^ugl_]jZevghcnmgdpbb\  fh`_l
h[jZsZlvky \ gmev ijb g_dhlhjuo dhfie_dkguo agZq_gbyo χ r  Wlb ihexku
ih^ugl_]jZevghcnmgdpbbkhhl\_lkl\mxlihklhyggufjZkijhkljZg_gbykh[kl\_gguob
\ul_dZxsbo\heg^bwe_dljbq_kdh]hkehygZwdjZg_bki_jkbhggh_mjZ\g_gb_^eyLF-\hegu\[_ajZaf_jguo\_ebqbgZobf__l\b^

                     ε     χ 2 − 1 − ε − χ 2 tg  k h ε − χ 2  = 0 .                                    (27)
                                                               
J_r_gby ^bki_jkbhggh]h mjZ\g_gby h[hagZqbf χ p ,                             p = 1, 2, 3, ...          p max .

MjZ\g_gb_   bf__l ih djZcg_c f_j_ h^gh j_r_gb_ J_r_gby e_]dh gZoh^blv
qbke_gghkihfhsvxWeylh]hqlh[umf_gvrblvihl_jbwg_j]bbgZ\ha[m`^_gb_
ih\_joghklguo\heg\fbdjhihehkdh\uoZgl_ggZobkihevamxlkyih^eh`dbbf_xsb_
fZemx we_dljbq_kdmx lhesbgm < wlhf kemqZ_ \ ih^eh`d_ jZkijhkljZgy_lky lhevdh
h^gZ ih\_joghklgZy \hegZ Fh`gh ihemqblv ijb[eb`_ggh_ agZq_gb_ __ ihklhygghc
jZkijhkljZg_gbyZgZeblbq_kdbbbkihevah\Zlv_]h\dZq_kl\_gZqZevgh]hijb[eb`_gby

ijb qbke_gghf j_r_gbb mjZ\g_gby   IheZ]Zy k h ε − χ 2 << 1   aZf_gbf \  
lZg]_gk _]h i_j\uf qe_ghf jZaeh`_gby \ kl_i_gghc jy^ b [m^_f bkdZlv j_r_gb_

ijb[eb`_ggh]hmjZ\g_gby\\b^_ χ = 1 + δ E_]dhihdZaZlvqlh δ ≈ (k h (ε − 1) ε )2 2 .
LZdbf h[jZahf ijb[eb`_ggh_ j_r_gb_ ^bki_jkbhggh]h mjZ\g_gby   \ kemqZ_
lhgdhcih^eh`dbbf__l\b^