Квантовые вычисления. Ожигов Ю.С. - 53 стр.

UptoLike

Составители: 

p
m2
(λ) = (λ 1 + ix)(λ 1 ix)(v
1
λ)(v
2
λ) . . . (v
m2
λ)+
v
1
y
2
1
(1 λ)(v
2
λ) . . . (v
m2
λ)+
v
2
y
2
2
(1 λ)(v
1
λ)(v
3
λ) . . . (v
m2
λ)+
. . . + v
m2
y
2
m2
(1 λ)(v
1
λ) . . . (v
m3
λ).
p
0
(λ) = (λ 1 + ix)(λ 1 ix)(v
1
λ)(v
2
λ) . . . (v
m2
λ)
p
m2
(λ) = p
0
+ δ
δ = v
1
y
2
1
(1 λ)(v
2
λ) . . . (v
m2
λ)+
v
2
y
2
2
(1 λ)(v
1
λ)(v
3
λ) . . . (v
m2
λ)+
. . . + v
m2
y
2
m2
(1 λ)(v
1
λ) . . . (v
m3
λ).
p
m2
p
0
(λ) δ p
0
(λ) λ
1
= 1ix, λ
2
=
1 + ix, λ
3
= v
1
, . . . , λ
m
= v
m2
p
m2
˜
λ
1
,
˜
λ
2
, . . . ,
˜
λ
m
λ
j
˜
λ
j
δ
λ
1,2
|λ
1
λ
2
| = o(|v
j
λ
1
|) |λ
1
λ
2
| δ
2
p
q A = λv = Ω(d)
λ
1
λ
2
|λ
1
λ
2
| q
q = γ(v
1
λ) ···(v
n2
λ) σ = |λ
1
˜
λ
1
|+ |λ
2
˜
λ
2
|
σ = O(δ/q
0
) =
m2
P
j=1
v
j
y
2
j
(1λ)
γ(v
j
λ)
v
j
λ = O(d
j
) 1 λ = O(γ)
σ = O(
1
d
P
j3
l
j
N
) o(γ)
P
j3
l
j
= o(d
Nl
2
)
˜
λ
1,2
= 1 + ix + o(γ)
˜
λ
3
= v + o(γ)
˜
λ
1,2
= 1 + ix + o(γ)
λ = 1 ix + o(γ) ¯a = (a, b, w
1
, . . . , w
m2
)
T
¯a (G λE)¯a =
¯
0
ix x y
1
v
1
. . . y
m2
v
m2
x ix 0 . . . 0
y
1
0 v
1
1 + ix . . . 0
. . . . . . . . . . . . . . .
y
m2
0 0 . . . v
m2
1 + ix
a
b
w
1
. . .
w
m2
=
o(γ)
o(γ)
o(γ)
. . .
o(γ)
.
ixa xb y
1
v
1
w
1
. . . y
m2
v
m2
w
m2
= o(γ)
xa +ixb = o(γ)
y
1
a +(v
1
1 + ix)w
1
= o(γ)
. . . . . . . . . . . . . . . . . .
y
m2
a +(v
m2
1 + ix)w
m2
= o(γ)
                                   


     #    $   %  #      

                         pm−2 (λ) = (λ − 1 + ix)(λ − 1 − ix)(v1 − λ)(v2 − λ) . . . (vm−2 − λ)+
                                    v1 y12 (1 − λ)(v2 − λ) . . . (vm−2 − λ)+                                            
                                    v2 y22 (1 − λ)(v1 − λ)(v3 − λ) . . . (vm−2 − λ)+
                                                   2
                                    . . . + vm−2 ym−2 (1 − λ)(v1 − λ) . . . (vm−3 − λ).
                                 p (λ) = (λ − 1 + ix)(λ − 1 − ix)(v − λ)(v − λ) . . . (v         
                                                        0                                1      2             m−2 − λ)
  p            0     
          m−2 (λ) = p + δ

                                           δ = v1 y12 (1 − λ)(v2 − λ) . . . (vm−2 − λ)+
                                           v2 y22 (1 − λ)(v1 − λ)(v3 − λ) . . . (vm−2 − λ)+
                                                          2
                                           . . . + vm−2 ym−2  (1 − λ)(v1 − λ) . . . (vm−3 − λ).
   
                  p           m−2p0 (λ)        δ  ( p0 (λ)  λ1 = 1 − ix, λ2 =
1 + ix, λ3 = v1 , . . . , λm = vm−2     pm−2    λ̃1 , λ̃2 , . . . , λ̃m 
         ' &      ' λ                 λ̃j   &  δ    #
                                                          j
 $ λ             
          1,2
       |λ − λ | = o(|v − λ |)   $  |λ − λ |  δ 2  )   p '
                          1    2         j    1                     1     2
         q  )  %% &  A = λ−v = Ω(d)  
λ1  λ2   |λ1 − λ2 |     q       $   
q = γ(v − λ) · · · (v
          1                 − λ)     &  '      σ = |λ − λ̃ | + |λ − λ̃ |  
                          n−2                                                                     1   1      2    2
                       m−2
                       P vj yj2 (1−λ) 
σ = O(δ/q ) = 0            *    v − λ = O(d )  1 − λ = O(γ)     
                            γ(vj −λ)             j      j
                       j=1
σ = O( d1
          P  lj   o(γ)        P l = o(d√N l )     
            N)                                                  j           2
              j≥3                                                                    j≥3
λ̃1,2 = 1 + −ix + o(γ)  λ̃3 = v + o(γ) 
                                               
 $               #   #  $ λ̃ = 1 + −ix + o(γ) 
                                                                  1,2
    λ = 1 − ix + o(γ)    $    &  ā = (a, b, w , . . . , w     T
                                                                             1           m−2 )
     $#    $      ā    % (G − λE)ā = 0̄ '  
      
                                                                                                        
                      ix       −x    −y1 v1          . . . −ym−2 vm−2                  a              o(γ)
              
                      x       ix      0             ...         0          
                                                                                     b      
                                                                                                    o(γ)   
                                                                                                             
              
                     y1        0 v1 − 1 + ix        ...         0          
                                                                                    w1     =
                                                                                                    o(γ)   .
                                                                                                             
                     ...      ...    ...            ...        ...                 ...            ...   
                      ym−2      0      0             . . . vm−2 − 1 + ix             wm−2             o(γ)
                                $#    $ # 
                  
                  
                           ixa      −xb          −y1 v1 w1        −...       −ym−2 vm−2 wm−2         = o(γ)
                  
                  
                            xa      +ixb                                                             = o(γ)
                            y1 a             +(v1 − 1 + ix)w1                                         = o(γ)
                  
                  
                  
                           ...      ...           ...              ...            ...                 ...
                  
                        ym−2 a                                             +(vm−2 − 1 + ix)wm−2       = o(γ)