ВУЗ:
Составители:
P
j≥2
l
j
/N =
˜
0 = (
√
1 − , X, Y
1
, . . . , Y
m−2
)
T
q
l
1
N
=
√
1 − = 1 −
2
+
o()
˜
0 ≈
˜
0
app
= (1, X, Y
1
, . . . , Y
m−2
)
T
O()
H
0
H
0
U I
˜
0
m H
0
U
U =
1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −v
1
. . . 0
. . . . . . . . . . . . . . .
0 0 . . . 0 −v
m−2
.
I
˜
0
I
˜
0
≈
I
˜
0
app
= V
−1
I
e
1
V V V
˜
0
app
= e
1
V
−1
I
e
1
V
˜
0
app
=
−V
−1
e
1
= −
˜
0
app
V
V =
1 X Y
1
Y
2
. . . Y
m−2
−X 1 0 0 . . . 0
−Y
1
0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
−Y
m−2
0 0 0 . . . 1
,
V
−1
=
1 −X −Y
1
−Y
2
. . . −Y
m−2
X 1 0 0 . . . 0
Y
1
0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
Y
m−2
0 0 0 . . . 1
.
I
e
1
=
−1 0 . . . 0
0 1 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
I
˜
0
app
= V
−1
I
e
1
V =
−1 −x −y
1
−y
2
. . . −y
m−2
−x 1 0 0 . . . 0
−y
1
0 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
−y
m−2
0 0 0 . . . 1
,
G = −I
˜
0
app
U =
1 −x −y
1
v
1
−y
2
v
2
. . . −y
m−2
v
m−2
x 1 0 0 . . . 0
y
1
0 v
1
0 . . . 0
. . . . . . . . . . . . . . . . . .
y
m−2
0 0 0 . . . v
m−2
.
0̃ = (√1 − , X, Y , . . . , Y √
q
' P l /N = T l1
1− = 1 −
j 1 m−2 ) N = 2 +
j≥2
o() 0̃ ≈ 0̃app = (1, X, Y1 , . . . , Ym−2 )T O() '
& ! H
0
$ H
0
U I0̃ m H0 & U
$
1 0 0 ... 0
0 −1 0 ... 0
U = 0 0 −v1 . . . 0 .
... ... ... ... ...
0 0 ... 0 −vm−2
$ & I I ≈
−1 &
0̃
# −1 0̃
I0̃app = V Ie1 V V V 0̃app = e1 V Ie1 V 0̃app =
−V −1 e = −0̃ & V
1 app
1 X Y1 Y2 . . . Ym−2
−X 1 0 0 ... 0
V =
−Y1 0 1 0 ... 0 ,
... ... ... ... ... ...
−Ym−2 0 0 0 ... 1
1 −X −Y1 −Y2 . . . −Ym−2
X 1 0 0 ... 0
V −1 =
Y1 0 1 0 ... 0 .
... ... ... ... ... ...
Ym−2 0 0 0 ... 1
−1 0 ... 0
0 1 ... 0
Ie1 =
0
0 ... 0
... ... ... ...
* ' &
−1 −x −y1 −y2 . . . −ym−2
−x 1 0 0 ... 0
I0̃app = V −1 Ie1 V =
−y1 0 1 0 ... 0 ,
... ... ... ... ... ...
−ym−2 0 0 0 ... 1
1 −x −y1 v1 −y2 v2 . . . −ym−2 vm−2
x 1 0 0 ... 0
G = −I0̃app U =
y1 0 v1 0 ... 0 .
... ... ... ... ... ...
ym−2 0 0 0 ... vm−2
Страницы
- « первая
- ‹ предыдущая
- …
- 49
- 50
- 51
- 52
- 53
- …
- следующая ›
- последняя »
