ВУЗ:
Составители:
kAk = max
k¯xk=1
kA¯xk.
G = −I
˜
0
app
U −I
˜
0
U
G
exact
kG −G
exact
k = kUkkI
˜
0
−I
˜
0
app
k = kI
˜
0
−I
˜
0
app
k = k
˜
0 −
˜
0
app
k = O()
G G
exact
G = G
exact
+ ∆
k∆k = O() t =
q
N
l
2
ν = t∆ =
P
j≥2
l
j
√
Nl
2
l
2
= O(
P
j≥3
) l
2
ν = o(1)
P
j≥3
= o(l
2
) ν
q
l
2
N
o(1) ν = o(1)
G
t
= (G
exact
+ ∆)
t
= G
t
exact
+ O(t∆G
t−1
exact
) = G
t
exact
+ o(1)
G
t
exact
G G
exact
G
p
m−2
(λ) = |G − λI| I
p
m−2
(λ) = 0
p
m−2
(λ) =
1 − λ −x −y
1
v
1
−y
2
v
2
. . . −y
m−2
v
m−2
x 1 − λ 0 0 . . . 0
y
1
0 v
1
− λ 0 . . . 0
. . . . . . . . . . . . . . . . . .
y
m−2
0 0 0 . . . v
m−2
− λ
=
(−1)
m+1
y
m−2
v
m−2
x 1 − λ 0 . . . 0
y
1
0 v
1
− λ . . . 0
y
2
0 0 . . . 0
. . . . . . . . . . . . . . .
y
m−2
0 0 . . . 0
+ (v
m−2
− λ)p
m−3
(λ) =
y
2
m−2
v
m−2
(1 − λ)(v
1
− λ) . . . (v
m−3
− λ) + (v
m−2
− λ)p
m−3
(λ).
p
m−2
(λ) = (v
m−2
− λ)p
m−3
(λ) + y
2
m−2
v
m−2
(1 − λ)(v
1
− λ) . . . (v
m−3
− λ).
−p
1
(λ) = (λ−1+ix)(λ−1 −ix)(v
1
−λ)+v
1
y
2
1
(1−λ)
#('# %! )'
' & $ '
)
$ $ $ $
kAk = max kAx̄k.
kx̄k=1
) ' G = −I $ & −I U
0̃app U 0̃
G kG − G − 0̃app k = O()
G
exact
' exact
Gexact
k
= kU kkI0̃
− I
0̃app
k
= kI
0̃ −
'
I0̃app
k
= k 0̃
G = G
P+ ∆
exact
k∆k = O() t = N
q
l2
& $ &
ν = t∆ =
j≥2
√
lj
N l2
P ' l ν = o(1)
l2 = O( ) 2
j≥3
q
P = o(l ) ν l2 o(1) # # ν = o(1)
2 N
j≥3
Gt = (G t t t−1 t
exact + ∆) = Gexact + O(t∆Gexact ) = Gexact + o(1)
Gt ' G G )
exact exact
$ G # $
p I & )
m−2 (λ) = |G − λI|
pm−2 (λ) = 0 $
1 − λ −x −y1 v1 −y2 v2 . . . −ym−2 vm−2
x 1−λ 0 0 ... 0
pm−2 (λ) = y1 0 v1 − λ 0 ... 0 =
... ... ... ... ... ...
ym−2 0 0 0 ... vm−2 − λ
x 1−λ 0 ... 0
y1 0 v1 − λ ... 0
(−1)m+1 ym−2 vm−2 y2 0 0 ... 0 + (vm−2 − λ)pm−3 (λ) =
... ... ... ... ...
ym−2 0 0 ... 0
2
ym−2 vm−2 (1 − λ)(v1 − λ) . . . (vm−3 − λ) + (vm−2 − λ)pm−3 (λ).
)
2
pm−2 (λ) = (vm−2 − λ)pm−3 (λ) + ym−2 vm−2 (1 − λ)(v1 − λ) . . . (vm−3 − λ).
*
−p1 (λ) = (λ − 1 + ix)(λ − 1 − ix)(v1 − λ) + v1 y12 (1 − λ) '
Страницы
- « первая
- ‹ предыдущая
- …
- 50
- 51
- 52
- 53
- 54
- …
- следующая ›
- последняя »
