Анализ прохождения сигналов через линейные цепи. Парфенов В.И. - 43 стр.

UptoLike

Составители: 

43
()
st
s
tt
sttt
tttt
()
(/)
,,.,.,.,
.,.,.,..
=
+
====⋅
====
−−−
0
10
01064100821009310
0001200019500029000345
2
2
1
3
2
3
3
3
4567
5.
(
)
WWW(),,,,,ωααωααα=+====
001192020352195
622
3
123
α
α
α
α
4567
2215235024202555
=
=
=
=
,,,.
(
)
ststtsttt
tttt
()|tanh(/)|,,.,.,.,
.,.,.,..
====⋅=
====
−−
01001085100941000011
0001900024000350004
1
3
2
3
3
4567
6. WWW()cosh,.,,,,ω
ωα
α
ααα=
+
====
00154192020352185
1
22
2
123
α
α
α
α
4567
2225234024252505
=
=
=
=
,,,.
st
s
tt
sttt()
|sinh(/)|
,,.,.,.,=
+
====⋅
−−
0
10
0104510066510072510
1
3
2
3
3
3
tttt08100981000015500021
4
3
5
3
67
====
,.,.,..
7.
WWW()ln,.,,,,ω
αω
αω
ααα=⋅
+
+
====0
2
0144650715840
22
22
123
α
α
α
α
4567
930107011451200
=
=
=
=
,,,.
()
st
s
tt
sttt
tttt
()
sinh(/)
,,.,.,.,
.,.,.,..
=
+
====⋅
====
−−
−−
0
10
01051100651007510
08510095100001500023
2
1
3
2
3
3
3
4
3
5
3
67
8.
W
W
W()
|sinh(/)|
,,,,,ω
ωα
ααα=
+
====
0
1
01125013651475
123
α
α
α
α
4567
1580169517201835
=
=
=
=
,,,.
(
)
st
st
tt
stt
ttttt
()
exp(||/)
,,.,.,.,
.,.,.,.,..
=
+
+
====⋅
=====
−−
−−
01
10
0207905910063510
0755100881009310000125000205
2
1
3
2
3
3
3
4
3
5
3
67
β
β
9.
(
)
WWW()(cosh(/)),.,,,ωωααα=+===
01014110951120
2
1/2
12
α
α
α
α
α
34567
12701355140515701655
=
=
=
=
=
,,,,.
()
ststtstt
ttttt
()|sinh(/)|,,.,.,
.,.,.,,..
=+===⋅
====⋅=
−−
−−
010010251003610
042510065100831009100001
1/2
1
3
2
3
3
3
4
3
5
3
6
3
7
10.
[
]
WWW()exp||/,,,,,
ω
ω
α
α
α
α
=
=
=
=
=
001107011751235
123
α
α
α
α
4567
1345148515501670
=
=
=
=
,,,.
                                                                43
                    s0
s(t ) =                           , s0 = 1, t 01 = 6.4 ⋅ 10 −3 , t 02 = 8.2 ⋅ 10 − 3 , t 03 = 9.3 ⋅ 10 − 3 ,
          (1 + (t / t 0) 2
                           2
                              )
t 04 = 0.012, t 05 = 0.0195, t 06 = 0.029, t 0 7 = 0.0345.

5. W (ω) = W 0α 6 α 2 + ω 2   (              ) −3 ,   W 0 = 1, α1 = 1920, α 2 = 2035, α 3 = 2195,
α 4 = 2215, α 5 = 2350, α 6 = 2420, α 7 = 2555.
s(t ) = s0(1−|tanh(t / t 0)|), s0 = 1, t 01 = 8.5 ⋅ 10 −3 , t 02 = 9.4 ⋅ 10 −3 , t 03 = 0.011,
t 04 = 0.019, t 05 = 0.024, t 06 = 0.035, t 07 = 0.04.
                        ω2 + α2 
6. W (ω) = W 0 cosh −1           , W 0 = 154
                                            . , α1 = 1920, α 2 = 2035, α 3 = 2185,
                        α2 
α 4 = 2225, α 5 = 2340, α 6 = 2425, α 7 = 2505.
              s0
s(t ) =                  , s0 = 1, t 01 = 4.5 ⋅10 −3 , t 02 = 6.65 ⋅10 −3 , t 03 = 7.25 ⋅ 10 −3 ,
       1+|sinh(t / t 0)|
t 04 = 8 ⋅ 10−3 , t 05 = 9.8 ⋅ 10−3 , t 06 = 0.0155, t 07 = 0.021.
                     2α 2 + ω 2 
7. W (ω) = W 0 ⋅ ln                        . , α1 = 650, α 2 = 715, α 3 = 840,
                                  , W 0 = 144
                     α2 + ω2 
α 4 = 930, α 5 = 1070, α 6 = 1145, α 7 = 1200.
                         s0
s(t ) =                                   , s0 = 1, t 01 = 51
                                                            . ⋅10 −3 , t 02 = 6.5 ⋅ 10 −3 , t 03 = 7.5 ⋅ 10 −3 ,
              1 + (sinh(t / t 0))
                                      2


t 04 = 8.5 ⋅10 −3 , t 05 = 9.5 ⋅10 −3 , t 06 = 0.015, t 07 = 0.023.
                 W0
8. W (ω) =                 , W 0 = 1, α1 = 1250, α 2 = 1365, α 3 = 1475,
           1+|sinh(ω / α)|
α 4 = 1580, α 5 = 1695, α 6 = 1720, α 7 = 1835.

s(t ) =
                (
              s0 1 + βt 2     )   , s0 = 2, β = 0.79, t 01 = 5.9 ⋅10 −3 , t 02 = 6.35 ⋅10 −3 ,
          1 + exp(|t |/t 0)
t 03 = 7.55 ⋅ 10 −3 , t 04 = 8.8 ⋅10 −3 , t 05 = 9.3 ⋅10 −3 , t 06 = 0.0125, t 07 = 0.0205.

                         (
9. W (ω) = W 0 1 + (cosh(ω / α))2                     ) −1/2,    W 0 = 141
                                                                        . , α1 = 1095, α 2 = 1120,
α 3 = 1270, α 4 = 1355, α 5 = 1405, α 6 = 1570, α 7 = 1655.
                                       −1/2
s(t ) = s0(1+|sinh(t / t 0)|)                 , s0 = 1, t 01 = 2.5 ⋅ 10−3 , t 02 = 3.6 ⋅ 10−3 ,
t 03 = 4.25 ⋅ 10−3 , t 04 = 6.5 ⋅ 10−3 , t 05 = 8.3 ⋅ 10 −3 , t 06 = 9 ⋅10 −3 , t 07 = 0.01.
10. W (ω) = W 0 ⋅ exp[ −| ω|/ α ] , W 0 = 1, α1 = 1070, α 2 = 1175, α 3 = 1235,
α 4 = 1345, α 5 = 1485, α 6 = 1550, α 7 = 1670.