Компьютерные науки. Першагин М.Ю. - 38 стр.

UptoLike

Составители: 

38
Итоговое задание по теме "Пакет Mathematica"
Провести исследование функции по следующей схеме:
1.
Область определения.
2.
Четность, нечетность.
3.
Точки пересечения с осями. Интервалы знакопостоянства.
4.
Экстремумы. Интервалы возрастания, убывания.
5.
Точки перегиба. Интервалы выпуклости, вогнутости.
6.
Асимптоты, поведение на бесконечности.
7.
Поведение вблизи точек разрыва.
8.
Построение графика функции.
Вариант 1
1
2
)(
2
+
=
x
xx
xf
Вариант 2
1
)(
2
3
+
=
x
x
xf
Вариант 3
1
1
)(
2
3
+
=
x
x
xf
Вариант 4
2
1
)(
2
+
=
x
x
xf
Вариант 5
x
x
xf
1
)(
2
+
=
Вариант 6
1
22
)(
2
+
=
x
xx
xf
Вариант 7
3
1
)(
2
++
=
x
xx
xf
Вариант 8
x
x
xf
1
)(
2
=
Вариант 9
1
2
)(
2
+
=
x
xx
xf
Вариант 10
3
23
)(
2
+
=
x
xx
xf
                Итоговое задание по теме "Пакет Mathematica"
Провести исследование функции по следующей схеме:
   1. Область определения.
   2. Четность, нечетность.
   3. Точки пересечения с осями. Интервалы знакопостоянства.
   4. Экстремумы. Интервалы возрастания, убывания.
   5. Точки перегиба. Интервалы выпуклости, вогнутости.
   6. Асимптоты, поведение на бесконечности.
   7. Поведение вблизи точек разрыва.
   8. Построение графика функции.
                      x2 − 2x
Вариант 1    f ( x) =
                        x +1
                        x3
Вариант 2    f ( x) = 2
                      x +1
                      x 3 −1
Вариант 3    f ( x) = 2
                      x +1
                      x 2 −1
Вариант 4    f ( x) =
                      x+2
                      x 2 +1
Вариант 5    f ( x) =
                          x
                      x − 2x + 2
                        2
Вариант 6    f ( x) =
                            x −1
                      x + x +1
                        2
Вариант 7    f ( x) =
                          x−3
                      x −1
                        2
Вариант 8    f ( x) =
                          x
                      x + 2x
                        2
Вариант 9    f ( x) =
                         x −1
                      x − 3x + 2
                        2
Вариант 10 f ( x) =
                           x −3




                                                               38