Нетрадиционный метод расчета электрических полей в полупроводниковых структурах. Петров Б.К - 16 стр.

UptoLike

Составители: 

16
обратных смещения и вдоль оси ОУ в различных частях p-n перехода . Все
параметры диодной структуры, рассчитанные по формулам (2.7)-(2.9) для 4-х
значений границы p
+
-n перехода x
2
=x
2
(y), представлены в таблице 1.
Таблица 1.
x
2
, мкм 12 15 18 22
x
1
,
мкм
0.711
0.690
0.671
0.652
a 0.22 0.16 0.12 0.09
U
,
В
19
33
52
83
бок
a
σ , Кл/см
2
2.253·10
-
7
3.549·10
-
7
5.180·10
-
7
7.381·10
-
7
M
σ
, Кл/см
2
1.493·10
-
8
2.460·10
-
8
3.750·10
-
8
5.550·10
-
8
Затем было рассчитано распределение составляющих поля E
x
и E
y
в
различных частях p-n перехода . На рис.5 представлено распределение
нормальной составляющей поля вдоль оси OX при различных значениях x
2
и
соответственно обратных смещениях U, которое находится по формуле :
[]
=+=+==
2
1
x
x
xMxaxd
dx)0y,x(E)0y,x(E)0y,x(EU
, (2.11)
где составляющей поля
)0y,x(E
допxa
=
принебрегаем.
Рис. 5 Распределение cоставляющей поля E
x
вдоль оси ОХ при различных
обратных смещениях.
0,E+00
1,E+04
2,E+04
3,E+04
4,E+04
5,E+04
6,E+04
7,E+04
8,E+04
9,E+04
0510152025
x, мкм
E
x
(x,y=0), В/см
U=19 В
U=33 В
U=52 В
U=83 В
о б р а тных сме щ е ни я и вдо ль о си ОУ в р а зли чных ча стях p-n пе р е хо да . В се
па р а ме тр ы ди о дно й стр уктур ы, р а ссчи та нные по фо р мула м (2.7)-(2.9) для 4-х
зна че ни й гр а ни цыp+-n пе р е хо да x2=x2(y), пр е дста вле ныв та б ли це 1.


Т а б ли ца 1.
x2, м к м                                12                   15                    18                    22
 x1, м к м                               0.711                0.690                 0.671                 0.652
 a                                       0.22                 0.16                  0.12                  0.09
U, В                                     19                   33                    52                    83
σ a бок , К л/см
                 2
                                         2.253·10-7           3.549·10-7            5.180·10-7            7.381·10-7
σ M , К л/см                             1.493·10-8           2.460·10-8            3.750·10-8            5.550·10-8
               2




                       З а те м б ыло р а ссчи та но р а спр е де ле ни е со ста вляю щ и х по ля Ex и Ey в
р а зли чных ча стях p-n пе р е хо да . Н а р и с.5 пр е дста вле но                                      р а спр е де ле ни е
но р ма льно й со ста вляю щ е й по ля вдо льо си OX пр и р а зли чных зна че ни ях x2 и
со о тве тстве нно о б р а тных сме щ е ни яхU, ко то р о е на хо ди тся по фо р муле :
             x2

U=            ∫ [E
             x1
                         xd   ( x , y = 0 ) + E xa ( x , y = 0 ) + E xM ( x , y = 0 )]dx ,                           (2.11)

где со ста вляю щ е й по ля E xa доп ( x , y = 0 ) пр и не б р е га е м.
    Ex(x,y=0), В /см




                        9,E+04

                        8,E+04
                                                                                                 U=83 В
                        7,E+04
                                                                                                 U=52 В
                        6,E+04                                                                   U=33 В

                        5,E+04                                                                   U=19 В

                        4,E+04

                        3,E+04

                        2,E+04

                        1,E+04

                        0,E+00
                                     0                5                10               15            20                 25
                                                                                                              x, м к м
Ри с. 5 Ра спр е де ле ни е cо ста вляю щ е й по ля Ex вдо льо си ОХ пр и р а зли чных
о б р а тных сме щ е ни ях.


                                                                      16