Нетрадиционный метод расчета электрических полей в полупроводниковых структурах. Петров Б.К - 4 стр.

UptoLike

Составители: 

4
весьма приблизительно задаются граничные условия: считается, что
напряженность электрического поля на поверхности перехода и за его
пределами равняется нулю [1]-[5], что на самом деле некорректно , также
приближенно считается, что распределение полей в плоской части p-n
перехода носит линейный характер. Кроме того , решение уравнения Пуассона
для p-n перехода по методу конечных разностей или конечных элементов
является сложным из-за трудности задания граничных условий и из-за
большого объема машинного времени, необходимых для реализации этих
методов.
Поэтому на кафедре физики полупроводников и микроэлектроники ВГУ
профессором Петровым Б . К . был предложен новый метод расчета полей в
резкоасимметричных планарных p-n переходах - метод "заряженных
цилиндров", смысл которого заключается в том, что сам планарный p-n
переход, находящийся под обратным смещением, заменяется слоями ,
состоящими из положительно и отрицательно заряженных цилиндров, при
этом мы вводим эффективные концентрации акцепторов (доноров),
учитывающие наличие полостей между цилиндрами . Метод "заряженных
цилиндров" отличается простотой и наглядностью . Для него нет
необходимости в строгих граничных условиях, требуется только лишь
равенства нулю нормальных составляющих полей на границах p-n переходах.
1. МЕТОД ЗАРЯЖЕННЫХ ЦИЛИНДРОВ” ДЛЯ РАСЧЕТА
ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ В ПЛАНАРНОМ p-n ПРЕХОДЕ
1.1. Постановка задачи
Рассмотрим резкоасимметричный планарный p-n переход (рис.1),
полученный диффузией акцепторной примеси (бора) в высокоомную
равномерно легированную кремниевую подложку. Распределение
акцепторной примеси вдоль координаты x (рис.1) обычно подчиняется закону
Гаусса :
ве сьма       пр и б ли зи те льно   за да ю тся гр а ни чные        усло ви я: счи та е тся, что
на пр яж е нно сть эле ктр и че ско го по ля на по ве р хно сти пе р е хо да и за е го
пр е де ла ми р а вняе тся нулю [1]-[5], что на са мо м де ле не ко р р е ктно , та кж е
пр и б ли ж е нно счи та е тся, что р а спр е де ле ни е по ле й в пло ско й ча сти p-n
пе р е хо да но си тли не йный ха р а кте р . Кр о ме то го , р е ш е ни е ур а вне ни я П уа ссо на
для p-n пе р е хо да по ме то ду ко не чных р а зно сте й и ли ко не чных эле ме нто в
являе тся сло ж ным и з-за тр удно сти за да ни я гр а ни чных усло ви й и и з-за
б о льш о го о б ъе ма ма ш и нно го вр е ме ни , не о б хо ди мых для р е а ли за ци и эти х
ме то до в.
      П о это му на ка фе др е фи зи ки по лупр о во дни ко в и ми кр о эле ктр о ни ки В Г У
пр о фе ссо р о м П е тр о вым Б.К. б ыл пр е дло ж е н но вый ме то д р а сче та по ле й в
р е зко а си мме тр и чных пла на р ных p-n пе р е хо да х - ме то д "за р яж е нных
ци ли ндр о в", смысл ко то р о го за клю ча е тся в то м, что са м пла на р ный p-n
пе р е хо д, на хо дящ и йся по д о б р а тным сме щ е ни е м, за ме няе тся сло ями ,
со сто ящ и ми и з по ло ж и те льно и о тр и ца те льно за р яж е нных ци ли ндр о в, пр и
это м мы вво ди м эффе кти вные                  ко нце нтр а ци и     а кце пто р о в (до но р о в),
учи тыва ю щ и е на ли чи е по ло сте й ме ж ду ци ли ндр а ми . М е то д "за р яж е нных
ци ли ндр о в"      о тли ча е тся   пр о сто то й       и   на глядно стью .    Д ля    не го    не т
не о б хо ди мо сти в стр о ги х гр а ни чных усло ви ях, тр е б уе тся то лько ли ш ь
р а ве нства нулю но р ма льныхсо ста вляю щ и хпо ле й на гр а ни ца хp-n пе р е хо да х.



1.    М ЕТО Д           “ЗАРЯЖ ЕН Н Ы Х              ЦИЛИН ДРО В ”          ДЛЯ         РАСЧ ЕТА
Э ЛЕК ТРИЧ ЕСК ИХ П О ЛЕЙ В П ЛАН АРН О М p-n П РЕХО ДЕ


1.1. П о ста н о вка за д а чи


        Ра ссмо тр и м р е зко а си мме тр и чный пла на р ный p-n пе р е хо д (р и с.1),
по луче нный ди ффузи е й а кце пто р но й пр и ме си                 (б о р а ) в высо ко о мную
р а вно ме р но       ле ги р о ва нную     кр е мни е вую        по дло ж ку.     Ра спр е де ле ни е
а кце пто р но й пр и ме си вдо лько о р ди на тыx (р и с.1) о б ычно по дчи няе тся за ко ну
Г а усса :

                                                     4