ВУЗ:
Составители:
Практическое занятие №8
Решение задач на вычисление погрешностей косвенных измерений
Цель занятия: получить практические навыки решения задач на
вычисление погрешностей косвенных измерений.
Методические указания
При подготовке к занятию по литературе [1] студентам необходимо
изучить порядок решения задач на вычисление погрешностей косвенных
измерений.
Примеры решения задач
Задача 1. Расчетная зависимость косвенного метода измерений имеет вид
IUP
⋅=
.
Решение.
IUP lnlnln
+=
;
IdUdPd lnlnln
+=
;
I
Id
U
Ud
P
Pd
+=
;
I
I
U
U
P
P
пр
∆
+
∆
=
∆
;
( )
IUP
пр
δδδ
+=
;
( ) ( ) ( )
22
IUP
ск
δδδ
+=
.
Задача 2. Расчетная зависимость
R
U
P
2
=
.
Решение.
RUP lnlnln
2
−=
;
RUP lnln2ln
−⋅=
или
RdUdPd lnln2ln
−⋅=
;
R
Rd
U
Ud
P
Pd
−=
2
;
R
R
U
U
P
P
пр
∆
+
∆
⋅=
∆
2
;
( )
RUP
пр
δδδ
+⋅=
2
;
( ) ( ) ( )
22
4
RUP
ск
δδδ
+⋅=
.
Задача 3. Расчетная зависимость
f
cba
Y
⋅+
=
)(
.
Решение.
Введем обозначение A=a+b. Тогда
f
cA
Y
⋅
=
;
fcAY lnlnlnln
−+=
;
fdcdAdYd lnlnlnln
−+=
;
f
fd
c
cd
A
Ad
Y
Yd
−+=
;
f
f
c
c
A
A
Y
Y
пр
∆
+
∆
+
∆
=
∆
;
fcAY
прпр
δδδδ
++=
;
( ) ( ) ( )
2
2
2
fcAY
скск
δδδδ
++=
;
ba
ba
A
A
A
пр
+
∆+∆
=
∆
=
δ
;
( ) ( )
ba
ba
A
ск
+
∆+∆
=
22
δ
.
Задача 4. Расчетная зависимость
)(
xfy
=
.
)(lnln xfy
=
;
)(lnln xfdyd
=
;
dx
dx
xdf
xfxf
xdf
y
dy )(
)(
1
)(
)(
⋅==
;
х
dx
xdf
xfy
y
∆⋅⋅=
∆
)(
)(
1
;
x
xf
xf
y
∆⋅
′
=
)(
)(
δ
.
Задача 5. Расчетная зависимость
)(
2
xf
l
g
y
⋅=
π
.
)(lnlnln
2
lnln xflgy
+−+=
π
;
)(lnlnln
2
lnln xfdldgddyd
+−+=
π
;
25