Тригонометрия гиперболической плоскости положительной кривизны. Ромакина Л.Н. - 32 стр.

UptoLike

Составители: 

B B
0
C
˜
b A = πi/2 α (B =
πi/2 + β) ch A = i sh α (ch B = i sh β)
1
= 1
(
2
= 1)
1
=
2
= 1
ch Re(A) R
+
ch Re(B) R
+
sh A = sh
πi
2
+ Re(A)
= i ch Re(A), sh B = sh
πi
2
+ Re(B)
= i ch Re(B),
sh A = i
(1 t
2
)
p
a
2
3
t
t
p
(t
2
1)
2
4(a
3
tb
3
)(b
3
ta
3
)
,
sh B = i
(1 t
2
)
p
b
2
3
t
t
p
(t
2
1)
2
4(a
3
tb
3
)(b
3
ta
3
)
.
ABC ˜a = πρ/2
˜
b 6= πρ/2
ch
˜c
ρ
= sin
˜
b
ρ
ch C, sh B = sh
˜
b
ρ
sh A, sh C = i sh
˜c
ρ
sh A.
˜a = πρ/2
˜
b = πρ/2 A = B
0
B = A
0
ABC ac bc
A
0
B
0
a b A
0
a
B
0
b a b
ch C = ch ˜c/ρ C = ˜c/ρ
ρ
ˆ
H
ABC A =
πi/2
sh
˜c
ρ
= sh C sin
˜a
ρ
, sin
˜
b
ρ
= i sh B sin
˜a
ρ
.
eeh(II)
ˆ
H ρ ρ
R
+
eeh(II)
ABC eeh(II) ¯a
˜
b
˜c
ch
˜c
ρ
= cos
¯a
ρ
cos
˜
b
ρ
+ sin
¯a
ρ
sin
˜
b
ρ
ch C,