Составители:
Рубрика:
R p
B
(1 : t : −2b
3
) p
C
(t : 1 : −2c
3
)
B
p
(b
p
: 2b
3
(c
3
− tb
3
) + t
2
− 1 : 2tc
3
− b
3
(t
2
+ 1)),
C
p
(2c
3
(b
3
− tc
3
) + t
2
− 1 : t − t
3
− 2c
3
(c
3
− tb
3
) : c
p
).
(CP BB
p
) =
t
2
+ 1 − 2b
3
c
3
− 2(b
2
3
− t)
t
2
+ 1 − 2b
3
c
3
, (BPCC
p
) =
t
2
+ 1 − 2b
3
c
3
− 2(c
2
3
− t)
t
2
+ 1 − 2b
3
c
3
.
(CP BB
p
) (BPCC
p
)
(CP BB
p
) + (BPCC
p
) = −2
(b
3
+ c
3
)
2
− (t + 1)
2
t
2
+ 1 − 2b
3
c
3
.
(CP BB
p
) (BPCC
p
)
cos
˜a
ρ
t
2
+ 1 −2b
3
c
3
= −1
cos
˜a
ρ
=
2b
3
c
3
− t
2
− 1
2
p
b
2
3
− t
p
c
2
3
− t
.
t ∈ (0; 1) A
b c
ch A =
1 + t
2
2t
, sh A =
1 − t
2
2t
,
B C a c a b
ch B = i
1
b
3
(1 + t
2
) − 2tc
3
√
t
p
4(b
3
− tc
3
)(c
3
− tb
3
) − (t
2
− 1)
2
,
1
= ±1,
ch C = i
2
c
3
(1 + t
2
) − 2tb
3
√
t
p
4(b
3
− tc
3
)(c
3
− tb
3
) − (t
2
− 1)
2
,
2
= ±1.
1
2
b
0
c
0
C B b c
b b
0
c c
0
πi/2 B (C)
ABC
a = c
0
(a = b
0
) c c
0
a BB
0
(cc
0
a(BB
0
)) > 0 ((cc
0
a(BB
0
)) < 0) B
ABC B = πi/2 + ϕ
1
(B = πi/2 − ϕ
1
)
ϕ
1
a c
0
ϕ
1
∈ R
+
ch B = ch
πi
2
± ϕ
1
= ±i sh ϕ
1
, sh ϕ
1
∈ R
+
,
Страницы
- « первая
- ‹ предыдущая
- …
- 34
- 35
- 36
- 37
- 38
- …
- следующая ›
- последняя »
