ВУЗ:
Составители:
Рубрика:
30
AZ^ZqbihijbdeZ^ghcklZlbklbd_
GZibkZlv^_fhgkljZpbhggmxmq_[gmxijh]jZffm©IehlghklbjZkij_
^_e_gby\_jhylghkl_cª
Ijh]jZffZ©Fh^_ebjh\Zgb_\j_f_ggh]hjy^ZªBkihevah\Zlvfh^_ev
:JKKIj_^mkfhlj_lv\hafh`ghklvkemqZcguob^_l_jfbgbjh\Zgguo\oh^guo
\ha^_ckl\bc
GZibkZlvijh]jZffmb^_glbnbdZpbb:J
-
fh^_eb\j_f_ggh]hjy^Zf_lh
^hfgZbf_gvrbod\Z^jZlh\
GZibkZlvijh]jZffmb^_glbnbdZpbb:J
-
fh^_eb\j_f_ggh]hjy^Zj_
dmjj_glguff_lh^hfgZbf_gvrbod\Z^jZlh\
GZibkZlv ijh]jZffm jZkq_lZ ki_dljZevghc iehlghklb fhsghklbi_
jbh^h]jZffguff_lh^hf
GZibkZlv ijh]jZffmjZkq_lZ ki_dljZevghc iehlghklb fhsghklb dhj
j_eh]jZffguff_lh^hf
B^_glbnbdZpby ebg_cghc kbkl_fuf_lh^hf ihke_^h\Zl_evgh]h h[m
q_gby
Ijh]jZffZ©Fh^_ebjh\Zgb_klhoZklbq_kdbomjZ\g_gbckhklhygbyª
KlZlbklbq_kdb_oZjZdl_jbklbdbebg_cguokbkl_f
GZ[ex^Zl_evkhklhygbyebg_cghckbkl_fu
Ijh]jZffZ©NbevljDZefZgZ
-
;vxkbª
AZ^Zqbihki_dljZevghcl_hjbbjZ^bhkb]gZeh\
Ihkljhblv aZ\bkbfhklv hl qZklhlu fh^mey ki_dljZevghc iehlghklb
ijyfhm]hevgh]hbfimevkZ k ^ebl_evghklvx jZ\ghcfdk b Zfieblm^hc<
=jZnbdihkljhblv^ey^bZiZahgZqZklhlhl^hF]p
GZclbki_dljZevgmxiehlghklv
G(j
ω
)
dhkbgmkhb^Zevgh]hbfimevkZ
>
<
⋅
⋅
=
.
2
T
t0,
,
2
T
t),
T
t
cos(U
u(t)
Ihkljhblv aZ\bkbfhklv hl qZklhlu fh^mey ki_dljZevghc iehlghklb\
^bZiZahg_qZklhlhl^hF]p^eyZfieblm^ugZijy`_gby 1T10B,U
== fdk
IhkljhblvlZd`_\j_f_ggmx^bZ]jZffmbfimevkZu(t).
F_lh^bq_kdb_ mdZaZgby: a^_kv b ^Ze__ih l_dklm
1j −= Ihkdhevdmbf
imevk u(t) hibku\Z_lky q_lghc nmgdpb_c \j_f_gb _]h ki_dljZevgZy iehlghklv
y\ey_lky^_ckl\bl_evghcnmgdpb_cqZklhluωIjb\h^bf__\ujZ`_gb_^eykZ
fhijh\_jdb:
30 AZ^ZqbihijbdeZ^ghcklZlbklbd_ GZibkZlv^_fhgkljZpbhggmxmq_[gmxijh]jZffm©IehlghklbjZkij_ ^_e_gby\_jhylghkl_cª Ijh]jZffZ©Fh^_ebjh\Zgb_\j_f_ggh]hjy^ZªBkihevah\Zlvfh^_ev :JKKIj_^mkfhlj_lv\hafh`ghklvkemqZcguob^_l_jfbgbjh\Zgguo\oh^guo \ha^_ckl\bc GZibkZlvijh]jZffmb^_glbnbdZpbb:J-fh^_eb\j_f_ggh]hjy^Zf_lh ^hfgZbf_gvrbod\Z^jZlh\ GZibkZlvijh]jZffmb^_glbnbdZpbb:J-fh^_eb\j_f_ggh]hjy^Zj_ dmjj_glguff_lh^hfgZbf_gvrbod\Z^jZlh\ GZibkZlv ijh]jZffm jZkq_lZ ki_dljZevghc iehlghklb fhsghklb i_ jbh^h]jZffguff_lh^hf GZibkZlv ijh]jZffm jZkq_lZ ki_dljZevghc iehlghklb fhsghklb dhj j_eh]jZffguff_lh^hf B^_glbnbdZpby ebg_cghc kbkl_fu f_lh^hf ihke_^h\Zl_evgh]h h[m q_gby Ijh]jZffZ©Fh^_ebjh\Zgb_klhoZklbq_kdbomjZ\g_gbckhklhygbyª KlZlbklbq_kdb_oZjZdl_jbklbdbebg_cguokbkl_f GZ[ex^Zl_evkhklhygbyebg_cghckbkl_fu Ijh]jZffZ©NbevljDZefZgZ-;vxkbª AZ^Zqbihki_dljZevghcl_hjbbjZ^bhkb]gZeh\ Ihkljhblv aZ\bkbfhklv hl qZklhlu fh^mey ki_dljZevghc iehlghklb ijyfhm]hevgh]h bfimevkZ k ^ebl_evghklvx jZ\ghc fdk b Zfieblm^hc < =jZnbdihkljhblv^ey^bZiZahgZqZklhlhl^hF]p GZclbki_dljZevgmxiehlghklvG(jω) dhkbgmkhb^Zevgh]hbfimevkZ T U ⋅ cos( ⋅ t T ), t < B 2 , B u(t) = T 0, t > B 2 . Ihkljhblv aZ\bkbfhklv hl qZklhlu fh^mey ki_dljZevghc iehlghklb \ ^bZiZahg_qZklhlhl^hF]p ^eyZfieblm^ugZijy`_gby U = 10B, TB = 1fdk IhkljhblvlZd`_\j_f_ggmx^bZ]jZffmbfimevkZu(t). F_lh^bq_kdb_ mdZaZgby: a^_kv b ^Ze__ ih l_dklm j = − 1 Ihkdhevdm bf imevk u(t) hibku\Z_lky q_lghc nmgdpb_c \j_f_gb _]h ki_dljZevgZy iehlghklv y\ey_lky^_ckl\bl_evghcnmgdpb_cqZklhluωIjb\h^bf__\ujZ`_gb_^eykZ fhijh\_jdb:
Страницы
- « первая
- ‹ предыдущая
- …
- 28
- 29
- 30
- 31
- 32
- …
- следующая ›
- последняя »