Введение в Delphi. Рудалев В.Г - 32 стр.

UptoLike

Составители: 

32
Z
4)(p2)(p1)(p
2p
F(p)
2
++
+
=
;
[
22
1)(p
1
F(p)
+
=
;
\
9)(p
ep
F(p)
2
2p
+
=
.
 Ihkljhblv b \u\_klb gZ i_qZlv Zfieblm^gh
-
nZah\u_ qZklhlgu_
oZjZdl_jbklbdb:NQO^eykbkl_fZ\lhfZlbq_kdh]hj_]mebjh\Zgbybf_xsbo
i_j_^Zlhqgu_nmgdpbbke_^mxs_]h\b^Z
Z
10p4pp
12045p
W(p)
23
+
+
=
;
[
10p4pp
4015p
W(p)
23
+
+
=
.
F_lh^bq_kdb_mdZaZgby
:
aZf_gyy
p
gZ
j
ωhli_j_^Zlhqghcnmgdpbb:S
i_j_oh^bf d :NQO
W(j
ω ]^_:Mω
)=U(
ω
)+jV(
ω
).
=h^h]jZn :NQO h[uqgh
kljhyl \ ijyfhm]hevguo dhhj^bgZlZo^89`Ijb ihkljh_gbb ]h^h]jZnZ
j_dhf_g^m_f baf_g_gby qZklhlu ω ijhba\h^blv \ ij_^_eZo ijb\h^ysbo d
baf_g_gbyf8\bgl_j\Ze_[0, -4], ZV - \bgl_j\Ze_[0, 10].
24. Ihkljhblv :NQO ^ey kbkl_fu Z\lhfZlbq_kdh]h j_]mebjh\Zgby
bf_xs_ci_j_^Zlhqgmxnmgdpbx
12p)(180p)(1
8
W(p)
++
= .
F_lh^bq_kdb_ mdZaZgby: ijb ihkljh_gbb ]h^h]jZnZ j_dhf_g^m_f aZ^Zlv
baf_g_gbyqZklhluω\ij_^_eZohl^h
1
k
.
GZclbi_j_^Zlhqgu_nmgdpbba\_gv_\kbkl_fuZ\lhfZlbq_kdh]hj_]m
ebjh\Zgby_kebba\_klgubo\_kh\u_nmgdpbb:
Z
()
tsin
k
k(t) =
, k=const,
[k(t) = (k/T)exp(-t/T).
IhgZc^_ggufi_j_^Zlhqgufnmgdpbyfihkljhblv]h^h]jZn:NQO
26. IhaZ^Zggufi_j_oh^gufnmgdpbyfh(t) a\_gv_\kbkl_fuZ\lhfZlbq_
kdh]hj_]mebjh\ZgbygZclbboi_j_^Zlhqgu_nmgdpbb:
Z t/2),exp(1(t)15h(t) = [ 1][exp(t/5)1(t)0,1h(t) = .
Ihke_hlukdZgbyi_j_^ZlhqghcnmgdpbbW(p) i_j_c^bl_d:NQOW(jω) b
ihkljhcl_ Zfieblm^gh-qZklhlgu_ A(ω) b nZah-qZklhlgu_ ϕ(ω) oZjZdl_jbklbdb
^Zgguo^\moa\_gv_\ <u\_^bl_gZi_qZlvaZ\bkbfhklbA(ωbϕ(ω).
F_lh^bq_kdb_mdZaZgby: ba\_klghqlh\ebg_cguokbkl_fZoZfieblm^Zb
nZaZ\ugm`^_gguodhe_[ZgbcaZ\bkylhl\_ebqbguqZklhlu\g_rg_]h\ha^_ckl
\byωIhwlhfmfh^mevbZj]mf_gldhfie_dkghcnmgdpbbW(jω) y\eyxlkynmgd
pbyfbqZklhluω:
W(jω)= A(ω)exp[jϕ(ω)].
AZ^Zqbihl_hjbbmijZ\e_gby
Ijh]jZffZ©QZklhlgu_oZjZdl_jbklbdba\_gZ\lhjh]hihjy^dZª
                                                  32

                            p+2
      Z  F(p) =                              ;
                (p + 1) ⋅ (p − 2) ⋅ (p 2 + 4)
      [  F(p) = 1 2           ;
                  (p + 1) 2
                         −2p
      \  F(p) = p ⋅ e            .
                        (p 2 + 9)
      Ihkljhblv b \u\_klb gZ i_qZlv Zfieblm^gh-nZah\u_ qZklhlgu_
oZjZdl_jbklbdb :NQO ^eykbkl_fZ\lhfZlbq_kdh]hj_]mebjh\Zgbybf_xsbo
i_j_^Zlhqgu_nmgdpbbke_^mxs_]h\b^Z
                                    45p + 120                        15p + 40
                   Z  W(p) = 3                  ; [   W(p)   =                  .
                                 p + 4p 2 − 10p                  p 3 + 4p 2 − 10p
     F_lh^bq_kdb_ mdZaZgby: aZf_gyyp gZjωhli_j_^Zlhqghcnmgdpbb: S 
i_j_oh^bf d :NQO W(jω  ]^_ : Mω)=U(ω)+jV(ω). =h^h]jZn :NQO h[uqgh
kljhyl \ ijyfhm]hevguo dhhj^bgZlZo ^8 9` Ijb ihkljh_gbb ]h^h]jZnZ
j_dhf_g^m_f baf_g_gby qZklhlu ω ijhba\h^blv \ ij_^_eZo ijb\h^ysbo d
baf_g_gbyf8\bgl_j\Ze_[0, -4], ZV - \bgl_j\Ze_[0, 10].
     24. Ihkljhblv :NQO ^ey kbkl_fu Z\lhfZlbq_kdh]h j_]mebjh\Zgby
bf_xs_ci_j_^Zlhqgmxnmgdpbx
                                                     8
                                    W(p) =                         .
                                            (1 + 80p) ⋅ (1 + 12p)
     F_lh^bq_kdb_ mdZaZgby: ijb ihkljh_gbb ]h^h]jZnZ j_dhf_g^m_f aZ^Zlv
baf_g_gbyqZklhluω\ij_^_eZohl^h k −1 .
     GZclbi_j_^Zlhqgu_nmgdpbba\_gv_\kbkl_fuZ\lhfZlbq_kdh]hj_]m
ebjh\Zgby_kebba\_klgubo\_kh\u_nmgdpbb:
                k
     Z  k(t) =  sin (Ωt ) , k=const,
                    
      [ k(t) = (k/T)exp(-t/T).
      IhgZc^_ggufi_j_^Zlhqgufnmgdpbyfihkljhblv]h^h]jZn:NQO
      26. IhaZ^Zggufi_j_oh^gufnmgdpbyfh(t) a\_gv_\kbkl_fuZ\lhfZlbq_
kdh]hj_]mebjh\ZgbygZclbboi_j_^Zlhqgu_nmgdpbb:
                  Z  h(t) = 15 ⋅1(t) ⋅ exp(− t/2), [  h(t) = 0,1⋅1(t) ⋅ [exp(t/5) − 1] .
      Ihke_hlukdZgbyi_j_^ZlhqghcnmgdpbbW(p) i_j_c^bl_d:NQOW(jω) b
ihkljhcl_ Zfieblm^gh-qZklhlgu_ A(ω) b nZah-qZklhlgu_ ϕ(ω) oZjZdl_jbklbdb
^Zgguo^\moa\_gv_\