ВУЗ:
Составители:
Рубрика:
31
()
2
3
)
2
&7
(
4
1
)
2
&7
cos(
2UT
j&G
⋅−
⋅= .
Ki_dljZevgZyiehlghklvbfimevkZu(t)bf__l\b^:
()
).&8H[Sj&G −=
GZclbbfimevku(t)bihkljhblv_]h\j_f_ggmx^bZ]jZffm
F_lh^bq_kdb_ mdZaZgby: ihkdhevdm ki_dljZevgZy iehlghklv G(jω) _klv
^_ckl\bl_evgZy nmgdpby qZklhlu lh bfimevk hibku\Z_lky q_lghc nmgdpb_c
\j_f_gb<p_eyokZfhijh\_jdbijb\h^bf__\ujZ`_gb_:
.
)t8u(t)
22
+=
GZclb b ihkljhblv aZ\bkbfhklv hl qZklhlu ki_dljZevghc iehlghklb
bfimevkZ
.
)texp(u(t)
22
−= Ihkljhblv lZd`_ \j_f_ggmx ^bZ]jZffm bfimevkZ
u(t).
F_lh^bq_kdb_ mdZaZgby ijb ihkljh_gbb aZ\bkbfhklb ki_dljZevghc
iehlghklb hl qZklhlu m^h[gh hldeZ^u\Zlv ih hkb Z[kpbkk \_ebqbgm
&
<
p_eyokZfhijh\_jdbijb\h^bf\ujZ`_gb_ki_dljZevghciehlghklb–
()
).
4
&
exp(
j&G
2
2
−⋅=
Bfimevkgh_dhe_[Zgb_aZ^Zghnhjfmehc 1(t),t)
7
10exp(15u(t) ⋅−⋅= ]^_
1(t) –nmgdpbyO_\bkZc^Znmgdpby\dexq_gbyrbjhdhbkihevam_fZy\l_hjbb
Z\lhfZlbq_kdh]hj_]mebjh\ZgbyHij_^_eblv]jZgbqgmxqZklhlm
]j
f
\]_jpZo
lZdbfh[jZahfqlh[u\bgl_j\Ze_qZklhl[0,
]j
f
@[uehkhkj_^hlhq_gh\k_c
wg_j]bbbfimevkZ
F_lh^bq_kdb_ mdZaZgby: wg_j]_lbq_kdbc ki_dlj jZkkfZljb\Z_fh]h bf
imevkZbf__l\b^
()
.
&10
225
&W
214
+
=
M]eh\Zy]jZgbqgZy qZklhlZ
]j
&
baf_jy_fZy \ jZ^bZgZo\ k_dmg^mm^h\
e_l\hjy_lmjZ\g_gbx
∫
+
⋅=
∫
+
∞
0
214214
&10
d&
0,9
&
0
&10
d&
,
]^_\ijZ\hcbe_\hcqZklbijbkmlkl\m_lijhkl_crbclZ[ebqgucbgl_]jZe
J_rb\^Zggh_mjZ\g_gb_ihgZc^_gghfmagZq_gbxm]eh\hcqZklhlugZoh
^bfdjm]h\mxqZklhlm
2
]j
&
]j
f
=
.
AZ^Zqbihl_hjbbZ\lhfZlbq_kdh]hj_]mebjh\Zgby
Ih aZ^ZgghfmEZieZkh\kdhfm bah[jZ`_gbx F(p) \hkklZgh\blvhjb]b
gZef(t) bihkljhblv_]h\j_f_ggmx^bZ]jZffm:
31 &7B cos( ) G (j&) = 2UTB 2 ⋅ . 1 − 4 ⋅ ( &7B ) 2 3 2 Ki_dljZevgZyiehlghklvbfimevkZu(t)bf__l\b^: G (j&) = 8H[S − & ). GZclbbfimevku(t)bihkljhblv_]h\j_f_ggmx^bZ]jZffm F_lh^bq_kdb_ mdZaZgby: ihkdhevdm ki_dljZevgZy iehlghklv G(jω) _klv ^_ckl\bl_evgZy nmgdpby qZklhlu lh bfimevk hibku\Z_lky q_lghc nmgdpb_c \j_f_gb<p_eyokZfhijh\_jdbijb\h^bf__\ujZ`_gb_: u(t) = 8 2 + t 2 ). GZclb b ihkljhblv aZ\bkbfhklv hl qZklhlu ki_dljZevghc iehlghklb bfimevkZ u(t) = exp(− 2 t 2 ). Ihkljhblv lZd`_ \j_f_ggmx ^bZ]jZffm bfimevkZ u(t). F_lh^bq_kdb_ mdZaZgby ijb ihkljh_gbb aZ\bkbfhklb ki_dljZevghc iehlghklb hl qZklhlu m^h[gh hldeZ^u\Zlv ih hkb Z[kpbkk \_ebqbgm & < p_eyokZfhijh\_jdbijb\h^bf\ujZ`_gb_ki_dljZevghciehlghklb– G (j&) = ⋅ exp(− & 2 ). 4 2 Bfimevkgh_dhe_[Zgb_aZ^Zghnhjfmehc u(t) = 15 ⋅ exp(−107 t) ⋅1(t), ]^_ 1(t) –nmgdpbyO_\bkZc^Z nmgdpby\dexq_gby rbjhdhbkihevam_fZy\l_hjbb Z\lhfZlbq_kdh]hj_]mebjh\ZgbyHij_^_eblv]jZgbqgmxqZklhlm f ]j \]_jpZo lZdbfh[jZahfqlh[u\bgl_j\Ze_qZklhl[0, f ]j @[uehkhkj_^hlhq_gh\k_c wg_j]bbbfimevkZ F_lh^bq_kdb_ mdZaZgby: wg_j]_lbq_kdbc ki_dlj jZkkfZljb\Z_fh]h bf imevkZbf__l\b^ 225 W(&) = 14 . 10 + & 2 M]eh\Zy ]jZgbqgZy qZklhlZ &]j baf_jy_fZy \ jZ^bZgZo \ k_dmg^mm^h\ e_l\hjy_lmjZ\g_gbx &]j ∞ d& d& ∫ = 0,9 ⋅ ∫ 14 , 0 1014 + & 2 0 10 + & 2 ]^_\ijZ\hcbe_\hcqZklbijbkmlkl\m_lijhkl_crbclZ[ebqgucbgl_]jZe J_rb\^Zggh_mjZ\g_gb_ihgZc^_gghfmagZq_gbxm]eh\hcqZklhlugZoh & ^bfdjm]h\mxqZklhlm f ]j = ]j 2 . AZ^Zqbihl_hjbbZ\lhfZlbq_kdh]hj_]mebjh\Zgby Ih aZ^Zgghfm EZieZkh\kdhfm bah[jZ`_gbx F(p) \hkklZgh\blv hjb]b gZef(t) bihkljhblv_]h\j_f_ggmx^bZ]jZffm:
Страницы
- « первая
- ‹ предыдущая
- …
- 29
- 30
- 31
- 32
- 33
- …
- следующая ›
- последняя »