Математическая логика и теория алгоритмов. Самохин А.В. - 109 стр.

UptoLike

Составители: 

Рубрика: 

§4. ÷ÙÒÁÚÉÍÏÓÔØ × ÁÒÉÆÍÅÔÉËÅ 109
úÁÄÁÞÁ 144. òÁÓÓÍÏÔÒÉÍ ÐÌÏÓËÏÓÔØ ËÁË ÉÎÔÅÒÐÒÅÔÁÃÉÀ ÓÉÇÎÁÔÕÒÙ,
ÓÏÄÅÒÖÁÝÅÊ ÐÒÅÄÉËÁÔ ÒÁ×ÅÎÓÔ×Á (ÓÏ×ÐÁÄÅÎÉÅ ÔÏÞÅË) É Ä×ÕÍÅÓÔÎÙÊ ÐÒÅ-
ÄÉËÁÔ ¥ÎÁÈÏÄÉÔØÓÑ ÎÁ ÒÁÓÓÔÏÑÎÉÉ 1¥. ÷ÙÒÁÚÉÔØ Ä×ÕÍÅÓÔÎÙÅ ÐÒÅÄÉËÁÔÙ
¥ÎÁÈÏÄÉÔØÓÑ ÎÁ ÒÁÓÓÔÏÑÎÉÉ 2¥ É ¥ÎÁÈÏÄÉÔØÓÑ ÎÁ ÒÁÓÓÔÏÑÎÉÉ ÎÅ ÂÏÌÅÅ 2¥.
§4. ÷ÙÒÁÚÉÍÏÓÔØ × ÁÒÉÆÍÅÔÉËÅ
òÁÓÓÍÏÔÒÉÍ ÓÉÇÎÁÔÕÒÕ, ÉÍÅÀÝÕÀ Ä×Á Ä×ÕÍÅÓÔÎÙÈ ÆÕÎËÃÉÏÎÁÌØÎÙÈ ÓÉÍ-
×ÏÌÁ ¡ ÓÌÏÖÅÎÉÅ É ÕÍÎÏÖÅÎÉÅ (ËÁË ÏÂÙÞÎÏ, ÍÙ ÂÕÄÅÍ ÐÉÓÁÔØ x + y ×ÍÅÓÔÏ
+(x, y) É Ô. Ä.) É Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ ÒÁ×ÅÎÓÔ×Á. òÁÓÓÍÏÔÒÉÍ
ÉÎÔÅÒÐÒÅÔÁÃÉÀ ÜÔÏÊ ÓÉÇÎÁÔÕÒÙ, ÎÏÓÉÔÅÌÅÍ ËÏÔÏÒÏÊ Ñ×ÌÑÅÔÓÑ ÍÎÏÖÅÓÔ×Ï N
ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ, Á ÓÌÏÖÅÎÉÅ, ÕÍÎÏÖÅÎÉÅ É ÒÁ×ÅÎÓÔ×Ï ÉÎÔÅÒÐÒÅÔÉÒÕÀÔÓÑ
ÓÔÁÎÄÁÒÔÎÙÍ ÏÂÒÁÚÏÍ.
÷ÙÒÁÚÉÍÙÅ Ó ÐÏÍÏÝØÀ ÆÏÒÍÕÌ ÜÔÏÊ ÓÉÇÎÁÔÕÒÙ ÐÒÅÄÉËÁÔÙ ÎÁÚÙ×ÁÀÔÓÑ
ÁÒÉÆÍÅÔÉÞÅÓËÉÍÉ É ÉÇÒÁÀÔ × ÍÁÔÅÍÁÔÉÞÅÓËÏÊ ÌÏÇÉËÅ ×ÁÖÎÕÀ ÒÏÌØ. óÏÏÔ-
×ÅÔÓÔ×ÕÀÝÉÅ ÍÎÏÖÅÓÔ×Á ÔÁËÖÅ ÎÁÚÙ×ÁÀÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍÉ. ï ÎÉÈ ÐÏ-
ÄÒÏÂÎÏ ÒÁÓÓËÁÚÁÎÏ × ÄÒÕÇÏÊ ÇÌÁ×Å; ÏËÁÚÙ×ÁÅÔÓÑ, ÞÔÏ ÐÏÞÔÉ ×ÓÑËÏÅ ÍÎÏÖÅÓÔ-
×Ï, ËÏÔÏÒÏÅ ÍÏÖÎÏ ÏÐÉÓÁÔØ ÓÌÏ×ÁÍÉ, Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ.
úÁÄÁÞÁ 145. äÏËÁÖÉÔÅ, ÞÔÏ ÓÕÝÅÓÔ×ÕÅÔ ÍÎÏÖÅÓÔ×Ï ÎÁÔÕÒÁÌØÎÙÈ
ÞÉÓÅÌ, ÎÅ Ñ×ÌÑÀÝÅÅÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ. (õËÁÚÁÎÉÅ: ÓÅÍÅÊÓÔ×Ï ×ÓÅÈ ÐÏÄ-
ÍÎÏÖÅÓÔ× ÍÎÏÖÅÓÔ×Á N ÎÅÓÞ¾ÔÎÏ, Á ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÍÎÏÖÅÓÔ× ÓÞ¾ÔÎÏÅ
ÞÉÓÌÏ.)
äÌÑ ÎÁÞÁÌÁ ÍÙ ÕÓÔÁÎÏ×ÉÍ ÁÒÉÆÍÅÔÉÞÎÏÓÔØ ÄÏ×ÏÌØÎÏ ÐÒÏÓÔÙÈ ÐÒÅÄÉËÁ-
ÔÏ×.
ðÒÅÄÉËÁÔ x 6 y Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÇÏ ÍÏÖÎÏ
ÚÁÐÉÓÁÔØ ËÁË z (x + z = y).
ðÒÅÄÉËÁÔÙ x = 0 É x = 1 Ñ×ÌÑÀÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍÉ. ÷ ÓÁÍÏÍ ÄÅÌÅ,
x = 0 ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ x 6 y ÄÌÑ ÌÀÂÏÇÏ y ÔÁËÖÅ ËÏÇÄÁ
x + x = x). á x = 1 ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ x ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ
ÎÁÉÍÅÎØÛÅÅ ÞÉÓÌÏ, ÏÔÌÉÞÎÏÅ ÏÔ ÎÕÌÑ. (íÏÖÎÏ ÔÁËÖÅ ×ÏÓÐÏÌØÚÏ×ÁÔØÓÑ
ÔÅÍ, ÞÔÏ y · 1 = y ÐÒÉ ÌÀÂÏÍ y.)
÷ÏÏÂÝÅ ÄÌÑ ÌÀÂÏÇÏ ÆÉËÓÉÒÏ×ÁÎÎÏÇÏ ÞÉÓÌÁ c ÐÒÅÄÉËÁÔ x = c Ñ×ÌÑÅÔ-
ÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ. (îÁÐÒÉÍÅÒ, ÍÏÖÎÏ ÎÁÐÉÓÁÔØ ÓÕÍÍÕ ÉÚ ÂÏÌØÛÏÇÏ
ÞÉÓÌÁ ÅÄÉÎÉÃ.)
ðÏÌÅÚÎÏ ÔÁËÏÅ ÏÂÝÅÅ ÎÁÂÌÀÄÅÎÉÅ: ÅÓÌÉ ÍÙ ÕÖÅ ÕÓÔÁÎÏ×ÉÌÉ, ÞÔÏ ËÁ-
ËÏÊ-ÔÏ ÐÒÅÄÉËÁÔ Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ, ÔÏ × ÄÁÌØÎÅÊÛÅÊ ÅÇÏ ÍÏÖ-
§4. ÷ÙÒÁÚÉÍÏÓÔØ × ÁÒÉÆÍÅÔÉËÅ                                          109

   úÁÄÁÞÁ 144. òÁÓÓÍÏÔÒÉÍ ÐÌÏÓËÏÓÔØ ËÁË ÉÎÔÅÒÐÒÅÔÁÃÉÀ ÓÉÇÎÁÔÕÒÙ,
ÓÏÄÅÒÖÁÝÅÊ ÐÒÅÄÉËÁÔ ÒÁ×ÅÎÓÔ×Á (ÓÏ×ÐÁÄÅÎÉÅ ÔÏÞÅË) É Ä×ÕÍÅÓÔÎÙÊ ÐÒÅ-
ÄÉËÁÔ ¥ÎÁÈÏÄÉÔØÓÑ ÎÁ ÒÁÓÓÔÏÑÎÉÉ 1¥. ÷ÙÒÁÚÉÔØ Ä×ÕÍÅÓÔÎÙÅ ÐÒÅÄÉËÁÔÙ
¥ÎÁÈÏÄÉÔØÓÑ ÎÁ ÒÁÓÓÔÏÑÎÉÉ 2¥ É ¥ÎÁÈÏÄÉÔØÓÑ ÎÁ ÒÁÓÓÔÏÑÎÉÉ ÎÅ ÂÏÌÅÅ 2¥.


  §4. ÷ÙÒÁÚÉÍÏÓÔØ × ÁÒÉÆÍÅÔÉËÅ
   òÁÓÓÍÏÔÒÉÍ ÓÉÇÎÁÔÕÒÕ, ÉÍÅÀÝÕÀ Ä×Á Ä×ÕÍÅÓÔÎÙÈ ÆÕÎËÃÉÏÎÁÌØÎÙÈ ÓÉÍ-
×ÏÌÁ ¡ ÓÌÏÖÅÎÉÅ É ÕÍÎÏÖÅÎÉÅ (ËÁË ÏÂÙÞÎÏ, ÍÙ ÂÕÄÅÍ ÐÉÓÁÔØ x + y ×ÍÅÓÔÏ
+(x, y) É Ô. Ä.) É Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔÎÙÊ ÓÉÍ×ÏÌ ÒÁ×ÅÎÓÔ×Á. òÁÓÓÍÏÔÒÉÍ
ÉÎÔÅÒÐÒÅÔÁÃÉÀ ÜÔÏÊ ÓÉÇÎÁÔÕÒÙ, ÎÏÓÉÔÅÌÅÍ ËÏÔÏÒÏÊ Ñ×ÌÑÅÔÓÑ ÍÎÏÖÅÓÔ×Ï N
ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ, Á ÓÌÏÖÅÎÉÅ, ÕÍÎÏÖÅÎÉÅ É ÒÁ×ÅÎÓÔ×Ï ÉÎÔÅÒÐÒÅÔÉÒÕÀÔÓÑ
ÓÔÁÎÄÁÒÔÎÙÍ ÏÂÒÁÚÏÍ.
   ÷ÙÒÁÚÉÍÙÅ Ó ÐÏÍÏÝØÀ ÆÏÒÍÕÌ ÜÔÏÊ ÓÉÇÎÁÔÕÒÙ ÐÒÅÄÉËÁÔÙ ÎÁÚÙ×ÁÀÔÓÑ
ÁÒÉÆÍÅÔÉÞÅÓËÉÍÉ É ÉÇÒÁÀÔ × ÍÁÔÅÍÁÔÉÞÅÓËÏÊ ÌÏÇÉËÅ ×ÁÖÎÕÀ ÒÏÌØ. óÏÏÔ-
×ÅÔÓÔ×ÕÀÝÉÅ ÍÎÏÖÅÓÔ×Á ÔÁËÖÅ ÎÁÚÙ×ÁÀÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍÉ. ï ÎÉÈ ÐÏ-
ÄÒÏÂÎÏ ÒÁÓÓËÁÚÁÎÏ × ÄÒÕÇÏÊ ÇÌÁ×Å; ÏËÁÚÙ×ÁÅÔÓÑ, ÞÔÏ ÐÏÞÔÉ ×ÓÑËÏÅ ÍÎÏÖÅÓÔ-
×Ï, ËÏÔÏÒÏÅ ÍÏÖÎÏ ÏÐÉÓÁÔØ ÓÌÏ×ÁÍÉ, Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ.
  úÁÄÁÞÁ 145. äÏËÁÖÉÔÅ, ÞÔÏ ÓÕÝÅÓÔ×ÕÅÔ ÍÎÏÖÅÓÔ×Ï ÎÁÔÕÒÁÌØÎÙÈ
ÞÉÓÅÌ, ÎÅ Ñ×ÌÑÀÝÅÅÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ. (õËÁÚÁÎÉÅ: ÓÅÍÅÊÓÔ×Ï ×ÓÅÈ ÐÏÄ-
ÍÎÏÖÅÓÔ× ÍÎÏÖÅÓÔ×Á N ÎÅÓÞ¾ÔÎÏ, Á ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÍÎÏÖÅÓÔ× ÓÞ¾ÔÎÏÅ
ÞÉÓÌÏ.)
   äÌÑ ÎÁÞÁÌÁ ÍÙ ÕÓÔÁÎÏ×ÉÍ ÁÒÉÆÍÅÔÉÞÎÏÓÔØ ÄÏ×ÏÌØÎÏ ÐÒÏÓÔÙÈ ÐÒÅÄÉËÁ-
ÔÏ×.
    • ðÒÅÄÉËÁÔ x 6 y Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÇÏ ÍÏÖÎÏ
      ÚÁÐÉÓÁÔØ ËÁË ∃z (x + z = y).
    • ðÒÅÄÉËÁÔÙ x = 0 É x = 1 Ñ×ÌÑÀÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍÉ. ÷ ÓÁÍÏÍ ÄÅÌÅ,
      x = 0 ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ x 6 y ÄÌÑ ÌÀÂÏÇÏ y (Á ÔÁËÖÅ ËÏÇÄÁ
      x + x = x). á x = 1 ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ x ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ
      ÎÁÉÍÅÎØÛÅÅ ÞÉÓÌÏ, ÏÔÌÉÞÎÏÅ ÏÔ ÎÕÌÑ. (íÏÖÎÏ ÔÁËÖÅ ×ÏÓÐÏÌØÚÏ×ÁÔØÓÑ
      ÔÅÍ, ÞÔÏ y · 1 = y ÐÒÉ ÌÀÂÏÍ y.)
    • ÷ÏÏÂÝÅ ÄÌÑ ÌÀÂÏÇÏ ÆÉËÓÉÒÏ×ÁÎÎÏÇÏ ÞÉÓÌÁ c ÐÒÅÄÉËÁÔ x = c Ñ×ÌÑÅÔ-
      ÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ. (îÁÐÒÉÍÅÒ, ÍÏÖÎÏ ÎÁÐÉÓÁÔØ ÓÕÍÍÕ ÉÚ ÂÏÌØÛÏÇÏ
      ÞÉÓÌÁ ÅÄÉÎÉÃ.)
    • ðÏÌÅÚÎÏ ÔÁËÏÅ ÏÂÝÅÅ ÎÁÂÌÀÄÅÎÉÅ: ÅÓÌÉ ÍÙ ÕÖÅ ÕÓÔÁÎÏ×ÉÌÉ, ÞÔÏ ËÁ-
      ËÏÊ-ÔÏ ÐÒÅÄÉËÁÔ Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÉÍ, ÔÏ × ÄÁÌØÎÅÊÛÅÊ ÅÇÏ ÍÏÖ-