ВУЗ:
Составители:
Рубрика:
§4. ÷ÙÒÁÚÉÍÏÓÔØ × ÁÒÉÆÍÅÔÉËÅ 111
üÔÏ ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÚÁÄÁ¾ÔÓÑ ÔÁË: ÞÔÏÂÙ ÐÏÌÕÞÉÔØ ÓÌÏ×Ï, ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÅ
ÞÉÓÌÕ n, ÎÁÄÏ ÚÁÐÉÓÁÔØ n + 1 × Ä×ÏÉÞÎÏÊ ÓÉÓÔÅÍÅ É ÕÄÁÌÉÔØ ÐÅÒ×ÕÀ ÅÄÉÎÉ-
ÃÕ. îÁÐÒÉÍÅÒ, ÎÕÌÀ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÕÓÔÏÅ ÓÌÏ×Ï ˜, ÞÉÓÌÕ 15 ¡ ÓÌÏ×Ï 0000
É Ô. Ä. ôÅÐÅÒØ ÍÏÖÎÏ ÇÏ×ÏÒÉÔØ Ï ÁÒÉÆÍÅÔÉÞÎÏÓÔÉ ÐÒÅÄÉËÁÔÏ×, ÏÐÒÅÄÅ̾Î-
ÎÙÈ ÎÁ Ä×ÏÉÞÎÙÈ ÓÌÏ×ÁÈ, ÉÍÅÑ × ×ÉÄÕ ÁÒÉÆÍÅÔÉÞÎÏÓÔØ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÈ
ÐÒÅÄÉËÁÔÏ× ÎÁ N.
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Ï x ÓÏÓÔÏÉÔ ÉÚ ÏÄÎÉÈ ÎÕÌÅÊ¥ ÁÒÉÆÍÅÔÉÞÅÎ. ÷ ÓÁÍÏÍ
ÄÅÌÅ, ÐÒÉ ÐÅÒÅÈÏÄÅ Ë ÞÉÓÌÁÍ ÅÍÕ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÒÅÄÉËÁÔ x + 1 ÅÓÔØ
ÓÔÅÐÅÎØ Ä×ÏÊËÉ¥, ËÏÔÏÒÙÊ (ËÁË ÍÙ ×ÉÄÅÌÉ) ÁÒÉÆÍÅÔÉÞÅÎ.
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Á x É y ÉÍÅÀÔ ÏÄÉÎÁËÏ×ÕÀ ÄÌÉÎÕ¥ ÁÒÉÆÍÅÔÉÞÅÎ. ÷
ÓÁÍÏÍ ÄÅÌÅ, ÜÔÏ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÎÁÊľÔÓÑ ÓÔÅÐÅÎØ Ä×ÏÊËÉ c, ÄÌÑ ËÏÔÏÒÏÊ
c − 1 6 x, y < 2c − 1 (ÉÍÅÎÎÏ ÔÁËÏÊ ÐÒÏÍÅÖÕÔÏË ÚÁÐÏÌÎÑÀÔ ÞÉÓÌÁ,
ËÏÔÏÒÙÍ ÓÏÏÔ×ÅÔÓÔ×ÕÀÔ ÓÌÏ×Á ÏÄÎÏÊ ÄÌÉÎÙ).
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Ï z Ñ×ÌÑÅÔÓÑ ËÏÎËÁÔÅÎÁÃÉÅÊ ÓÌÏ× x É y¥ (ÐÒÏÝÅ ÇÏ×Ï-
ÒÑ, z ÐÏÌÕÞÁÅÔÓÑ ÐÒÉÐÉÓÙ×ÁÎÉÅÍ y ÓÐÒÁ×Á Ë ÓÌÏ×Õ x) ÁÒÉÆÍÅÔÉÞÅÎ.
÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÇÏ ÍÏÖÎÏ ×ÙÒÁÚÉÔØ ÔÁË: ÎÁÊľÔÓÑ ÓÌÏ×Ï y
0
ÉÚ ÏÄÎÉÈ
ÎÕÌÅÊ, ÉÍÅÀÝÅÅ ÔÕ ÖÅ ÄÌÉÎÕ, ÞÔÏ É ÓÌÏ×Ï y, ÐÒÉ ÜÔÏÍ (z + 1) =
= (x + 1)(y
0
+ 1) + (y − y
0
) (ÕÍÎÏÖÅÎÉÅ ÎÁ y
0
+ 1 ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÄÏ-
ÐÉÓÙ×ÁÎÉÀ ÎÕÌÅÊ, Á ÄÏÂÁ×ÌÅÎÉÅ y − y
0
ÚÁÍÅÎÑÅÔ ÎÕÌÉ ÎÁ ÂÕË×Ù ÓÌÏ×Á
y).
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Ï x Ñ×ÌÑÅÔÓÑ ÎÁÞÁÌÏÍ ÓÌÏ×Á y¥ ÁÒÉÆÍÅÔÉÞÅÎ. ÷ ÓÁÍÏÍ
ÄÅÌÅ, ÜÔÏ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÓÕÝÅÓÔ×ÕÅÔ ÓÌÏ×Ï t, ÐÒÉ ËÏÔÏÒÏÍ y ÅÓÔØ ËÏÎËÁ-
ÔÅÎÁÃÉÑ x É t.
• ôÏ ÖÅ ÓÁÍÏÅ ×ÅÒÎÏ ÄÌÑ ÐÒÅÄÉËÁÔÏ× ¥x ÅÓÔØ ËÏÎÅà ÓÌÏ×Á y¥, ¥x ÅÓÔØ
ÐÏÄÓÌÏ×Ï ÓÌÏ×Á y¥ (ÐÏÓÌÅÄÎÅÅ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÎÁÊÄÕÔÓÑ ÓÌÏ×Á u É v, ÄÌÑ
ËÏÔÏÒÙÈ y ÅÓÔØ ËÏÎËÁÔÅÎÁÃÉÑ u, x É v; ËÏÎËÁÔÅÎÁÃÉÑ ÔÒ¾È ÓÌÏ× ×ÙÒÁ-
ÚÉÍÁ ÞÅÒÅÚ ËÏÎËÁÔÅÎÁÃÉÀ Ä×ÕÈ).
• óÕÝÅÓÔ×ÕÅÔ ÁÒÉÆÍÅÔÉÞÅÓËÉÊ ÔÒ¾ÈÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔ S(x, a, b) Ó ÔÁËÉ-
ÍÉ Ó×ÏÊÓÔ×ÁÍÉ: (Á) ÄÌÑ ÌÀÂÙÈ a É b ÍÎÏÖÅÓÔ×Ï S
ab
= {x | S(x, a, b)}
ËÏÎÅÞÎÏ; (Â) ÓÒÅÄÉ ÍÎÏÖÅÓÔ× S
ab
ÐÒÉ ÒÁÚÌÉÞÎÙÈ ÐÁÒÁÈ a, b ×ÓÔÒÅÞÁÀÔ-
ÓÑ ×ÓÅ ËÏÎÅÞÎÙÅ ÍÎÏÖÅÓÔ×Á. îÁÐÒÉÍÅÒ, × ËÁÞÅÓÔ×Å ÔÁËÏÇÏ ÐÒÅÄÉËÁÔÁ
ÍÏÖÎÏ ×ÚÑÔØ ¥axa ÅÓÔØ ÐÏÄÓÌÏ×Ï ÓÌÏ×Á b¥ (ÚÄÅÓØ axa ÅÓÔØ ËÏÎËÁÔÅÎÁÃÉÑ
ÔÒ¾È ÓÌÏ×: a, x É ÓÎÏ×Á a).
÷ ÓÁÍÏÍ ÄÅÌÅ, ÑÓÎÏ, ÞÔÏ ÓÌÏ×Ï x ÎÅ ÄÌÉÎÎÅÅ ÓÌÏ×Á b, É ÐÏÔÏÍÕ ÍÎÏ-
ÖÅÓÔ×Ï S
ab
×ÓÅÇÄÁ ËÏÎÅÞÎÏ. ó ÄÒÕÇÏÊ ÓÔÏÒÏÎÙ, ÐÕÓÔØ ÉÍÅÅÔÓÑ ÎÅËÏÔÏÒÏÅ
ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÓÌÏ× x
1
, . . . , x
n
. ðÏÌÏÖÉÍ a = 100 . . . 001, ÇÄÅ ÞÉÓÌÏ
ÎÕÌÅÊ ÂÏÌØÛÅ ÄÌÉÎÙ ÌÀÂÏÇÏ ÉÚ ÓÌÏ× x
i
, É b = ax
1
ax
2
a . . . ax
n
a.
ðÏÓÌÅÄÎÅÅ ÕÔ×ÅÒÖÄÅÎÉÅ ÎÅ ÕÐÏÍÉÎÁÅÔ Ñ×ÎÏ Ï ÓÌÏ×ÁÈ, É ÂÏÌØÛÅ ÏÎÉ ÎÁÍ
ÎÅ ÐÏÎÁÄÏÂÑÔÓÑ: ÄÏÓÔÁÔÏÞÎÏ ÚÎÁÔØ, ÞÔÏ ËÏÎÅÞÎÙÅ ÍÎÏÖÅÓÔ×Á ÎÁÔÕÒÁÌØÎÙÈ
§4. ÷ÙÒÁÚÉÍÏÓÔØ × ÁÒÉÆÍÅÔÉËÅ 111
üÔÏ ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÚÁÄÁ¾ÔÓÑ ÔÁË: ÞÔÏÂÙ ÐÏÌÕÞÉÔØ ÓÌÏ×Ï, ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÅ
ÞÉÓÌÕ n, ÎÁÄÏ ÚÁÐÉÓÁÔØ n + 1 × Ä×ÏÉÞÎÏÊ ÓÉÓÔÅÍÅ É ÕÄÁÌÉÔØ ÐÅÒ×ÕÀ ÅÄÉÎÉ-
ÃÕ. îÁÐÒÉÍÅÒ, ÎÕÌÀ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÕÓÔÏÅ ÓÌÏ×Ï ˜, ÞÉÓÌÕ 15 ¡ ÓÌÏ×Ï 0000
É Ô. Ä. ôÅÐÅÒØ ÍÏÖÎÏ ÇÏ×ÏÒÉÔØ Ï ÁÒÉÆÍÅÔÉÞÎÏÓÔÉ ÐÒÅÄÉËÁÔÏ×, ÏÐÒÅÄÅ̾Î-
ÎÙÈ ÎÁ Ä×ÏÉÞÎÙÈ ÓÌÏ×ÁÈ, ÉÍÅÑ × ×ÉÄÕ ÁÒÉÆÍÅÔÉÞÎÏÓÔØ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÉÈ
ÐÒÅÄÉËÁÔÏ× ÎÁ N.
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Ï x ÓÏÓÔÏÉÔ ÉÚ ÏÄÎÉÈ ÎÕÌÅÊ¥ ÁÒÉÆÍÅÔÉÞÅÎ. ÷ ÓÁÍÏÍ
ÄÅÌÅ, ÐÒÉ ÐÅÒÅÈÏÄÅ Ë ÞÉÓÌÁÍ ÅÍÕ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÒÅÄÉËÁÔ x + 1 ÅÓÔØ
ÓÔÅÐÅÎØ Ä×ÏÊËÉ¥, ËÏÔÏÒÙÊ (ËÁË ÍÙ ×ÉÄÅÌÉ) ÁÒÉÆÍÅÔÉÞÅÎ.
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Á x É y ÉÍÅÀÔ ÏÄÉÎÁËÏ×ÕÀ ÄÌÉÎÕ¥ ÁÒÉÆÍÅÔÉÞÅÎ. ÷
ÓÁÍÏÍ ÄÅÌÅ, ÜÔÏ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÎÁÊľÔÓÑ ÓÔÅÐÅÎØ Ä×ÏÊËÉ c, ÄÌÑ ËÏÔÏÒÏÊ
c − 1 6 x, y < 2c − 1 (ÉÍÅÎÎÏ ÔÁËÏÊ ÐÒÏÍÅÖÕÔÏË ÚÁÐÏÌÎÑÀÔ ÞÉÓÌÁ,
ËÏÔÏÒÙÍ ÓÏÏÔ×ÅÔÓÔ×ÕÀÔ ÓÌÏ×Á ÏÄÎÏÊ ÄÌÉÎÙ).
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Ï z Ñ×ÌÑÅÔÓÑ ËÏÎËÁÔÅÎÁÃÉÅÊ ÓÌÏ× x É y¥ (ÐÒÏÝÅ ÇÏ×Ï-
ÒÑ, z ÐÏÌÕÞÁÅÔÓÑ ÐÒÉÐÉÓÙ×ÁÎÉÅÍ y ÓÐÒÁ×Á Ë ÓÌÏ×Õ x) ÁÒÉÆÍÅÔÉÞÅÎ.
÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÇÏ ÍÏÖÎÏ ×ÙÒÁÚÉÔØ ÔÁË: ÎÁÊľÔÓÑ ÓÌÏ×Ï y 0 ÉÚ ÏÄÎÉÈ
ÎÕÌÅÊ, ÉÍÅÀÝÅÅ ÔÕ ÖÅ ÄÌÉÎÕ, ÞÔÏ É ÓÌÏ×Ï y, ÐÒÉ ÜÔÏÍ (z + 1) =
= (x + 1)(y 0 + 1) + (y − y 0 ) (ÕÍÎÏÖÅÎÉÅ ÎÁ y 0 + 1 ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÄÏ-
ÐÉÓÙ×ÁÎÉÀ ÎÕÌÅÊ, Á ÄÏÂÁ×ÌÅÎÉÅ y − y 0 ÚÁÍÅÎÑÅÔ ÎÕÌÉ ÎÁ ÂÕË×Ù ÓÌÏ×Á
y).
• ðÒÅÄÉËÁÔ ¥ÓÌÏ×Ï x Ñ×ÌÑÅÔÓÑ ÎÁÞÁÌÏÍ ÓÌÏ×Á y¥ ÁÒÉÆÍÅÔÉÞÅÎ. ÷ ÓÁÍÏÍ
ÄÅÌÅ, ÜÔÏ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÓÕÝÅÓÔ×ÕÅÔ ÓÌÏ×Ï t, ÐÒÉ ËÏÔÏÒÏÍ y ÅÓÔØ ËÏÎËÁ-
ÔÅÎÁÃÉÑ x É t.
• ôÏ ÖÅ ÓÁÍÏÅ ×ÅÒÎÏ ÄÌÑ ÐÒÅÄÉËÁÔÏ× ¥x ÅÓÔØ ËÏÎÅà ÓÌÏ×Á y¥, ¥x ÅÓÔØ
ÐÏÄÓÌÏ×Ï ÓÌÏ×Á y¥ (ÐÏÓÌÅÄÎÅÅ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÎÁÊÄÕÔÓÑ ÓÌÏ×Á u É v, ÄÌÑ
ËÏÔÏÒÙÈ y ÅÓÔØ ËÏÎËÁÔÅÎÁÃÉÑ u, x É v; ËÏÎËÁÔÅÎÁÃÉÑ ÔÒ¾È ÓÌÏ× ×ÙÒÁ-
ÚÉÍÁ ÞÅÒÅÚ ËÏÎËÁÔÅÎÁÃÉÀ Ä×ÕÈ).
• óÕÝÅÓÔ×ÕÅÔ ÁÒÉÆÍÅÔÉÞÅÓËÉÊ ÔÒ¾ÈÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔ S(x, a, b) Ó ÔÁËÉ-
ÍÉ Ó×ÏÊÓÔ×ÁÍÉ: (Á) ÄÌÑ ÌÀÂÙÈ a É b ÍÎÏÖÅÓÔ×Ï Sab = {x | S(x, a, b)}
ËÏÎÅÞÎÏ; (Â) ÓÒÅÄÉ ÍÎÏÖÅÓÔ× Sab ÐÒÉ ÒÁÚÌÉÞÎÙÈ ÐÁÒÁÈ a, b ×ÓÔÒÅÞÁÀÔ-
ÓÑ ×ÓÅ ËÏÎÅÞÎÙÅ ÍÎÏÖÅÓÔ×Á. îÁÐÒÉÍÅÒ, × ËÁÞÅÓÔ×Å ÔÁËÏÇÏ ÐÒÅÄÉËÁÔÁ
ÍÏÖÎÏ ×ÚÑÔØ ¥axa ÅÓÔØ ÐÏÄÓÌÏ×Ï ÓÌÏ×Á b¥ (ÚÄÅÓØ axa ÅÓÔØ ËÏÎËÁÔÅÎÁÃÉÑ
ÔÒ¾È ÓÌÏ×: a, x É ÓÎÏ×Á a).
÷ ÓÁÍÏÍ ÄÅÌÅ, ÑÓÎÏ, ÞÔÏ ÓÌÏ×Ï x ÎÅ ÄÌÉÎÎÅÅ ÓÌÏ×Á b, É ÐÏÔÏÍÕ ÍÎÏ-
ÖÅÓÔ×Ï Sab ×ÓÅÇÄÁ ËÏÎÅÞÎÏ. ó ÄÒÕÇÏÊ ÓÔÏÒÏÎÙ, ÐÕÓÔØ ÉÍÅÅÔÓÑ ÎÅËÏÔÏÒÏÅ
ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÓÌÏ× x1, . . . , xn. ðÏÌÏÖÉÍ a = 100 . . . 001, ÇÄÅ ÞÉÓÌÏ
ÎÕÌÅÊ ÂÏÌØÛÅ ÄÌÉÎÙ ÌÀÂÏÇÏ ÉÚ ÓÌÏ× xi, É b = ax1 ax2a . . . axn a.
ðÏÓÌÅÄÎÅÅ ÕÔ×ÅÒÖÄÅÎÉÅ ÎÅ ÕÐÏÍÉÎÁÅÔ Ñ×ÎÏ Ï ÓÌÏ×ÁÈ, É ÂÏÌØÛÅ ÏÎÉ ÎÁÍ
ÎÅ ÐÏÎÁÄÏÂÑÔÓÑ: ÄÏÓÔÁÔÏÞÎÏ ÚÎÁÔØ, ÞÔÏ ËÏÎÅÞÎÙÅ ÍÎÏÖÅÓÔ×Á ÎÁÔÕÒÁÌØÎÙÈ
Страницы
- « первая
- ‹ предыдущая
- …
- 109
- 110
- 111
- 112
- 113
- …
- следующая ›
- последняя »
