ВУЗ:
Составители:
Рубрика:
112 çÌÁ×Á V. ñÚÙËÉ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ
ÞÉÓÅÌ ÍÏÖÎÏ ËÏÄÉÒÏ×ÁÔØ ÐÁÒÁÍÉ ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ × ÏÐÉÓÁÎÎÏÍ ÓÍÙÓÌÅ.
ôÅÐÅÒØ ÍÙ ÍÏÖÅÍ ×ÙÒÁÚÉÔØ, ÞÔÏ ÞÉÓÌÏ x Ñ×ÌÑÅÔÓÑ ÓÔÅÐÅÎØÀ ÞÉÓÌÁ 4,
ÓÌÅÄÕÀÝÉÍ ÏÂÒÁÚÏÍ: ÓÕÝÅÓÔ×ÕÅÔ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï U, ËÏÔÏÒÏÅ ÓÏÄÅÒÖÉÔ
ÞÉÓÌÏ x É ÏÂÌÁÄÁÅÔ ÔÁËÉÍ Ó×ÏÊÓÔ×ÏÍ: ×ÓÑËÉÊ ÜÌÅÍÅÎÔ u ∈ U ÌÉÂÏ ÒÁ×ÅÎ 1,
ÌÉÂÏ ÄÅÌÉÔÓÑ ÎÁ 4 É u/4 ÔÁËÖÅ ÐÒÉÎÁÄÌÅÖÉÔ U. ôÅÐÅÒØ ÎÁÄÏ ×ÅÚÄÅ ÚÁÍÅÎÉÔØ
ÍÎÏÖÅÓÔ×Ï U ÎÁ ÅÇÏ ËÏÄ u
1
, u
2
, Á ÕÔ×ÅÒÖÄÅÎÉÅ x ∈ U ÎÁ S(x, u
1
, u
2
), ÇÄÅ S ¡
ÐÏÓÔÒÏÅÎÎÙÊ ÎÁÍÉ ËÏÄÉÒÕÀÝÉÊ ÐÒÅÄÉËÁÔ.
îÅÍÎÏÇÏ ÓÌÏÖÎÅÅ ×ÙÒÁÚÉÔØ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔ x = 4
k
. úÄÅÓØ ÎÁÍ ÈÏ-
ÔÅÌÏÓØ ÂÙ ÓËÁÚÁÔØ ÔÁË: ÓÕÝÅÓÔ×ÕÅÔ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ x
0
, x
1
, . . . , x
k
, ÄÌÑ
ËÏÔÏÒÏÊ x
0
= 1, ËÁÖÄÙÊ ÓÌÅÄÕÀÝÉÊ ÞÌÅÎ ×ÞÅÔ×ÅÒÏ ÂÏÌØÛÅ ÐÒÅÄÙÄÕÝÅ-
ÇÏ (x
i+1
= 4x
i
) É x
k
= x. ëÁË ÎÁÕÞÉÔØÓÑ ÇÏ×ÏÒÉÔØ Ï ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏ-
ÓÔÑÈ, ÅÓÌÉ ÍÙ ÕÍÅÅÍ ÇÏ×ÏÒÉÔØ Ï ÍÎÏÖÅÓÔ×ÁÈ? ÷ÓÐÏÍÎÉÍ, ÞÔÏ × ÔÅÒÍÉ-
ÎÁÈ ÔÅÏÒÉÉ ÍÎÏÖÅÓÔ× ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÅÓÔØ ÆÕÎËÃÉÑ, ÏÐÒÅÄÅ̾ÎÎÁÑ ÎÁ
ÎÁÞÁÌØÎÏÍ ÏÔÒÅÚËÅ ÎÁÔÕÒÁÌØÎÏÇÏ ÒÑÄÁ, ÔÏ ÅÓÔØ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÐÁÒ
{h0, x
0
i, h1, x
1
i, . . . , hk, x
k
i}. ðÁÒÙ ÍÏÖÎÏ ËÏÄÉÒÏ×ÁÔØ ÞÉÓÌÁÍÉ. îÁÐÒÉÍÅÒ,
ÍÏÖÎÏ ÓÞÉÔÁÔØ ËÏÄÏÍ ÐÁÒÙ hx, yi ÞÉÓÌÏ c = (x + y)
2
+ x, ÐÏÓËÏÌØËÕ ÐÏ ÎÅÍÕ
ÁÒÉÆÍÅÔÉÞÅÓËÉ ×ÏÓÓÔÁÎÁ×ÌÉ×ÁÅÔÓÑ x + y (ËÁË ÎÁÉÂÏÌØÛÅÅ ÞÉÓÌÏ, Ë×ÁÄÒÁÔ
ËÏÔÏÒÏÇÏ ÎÅ ÐÒÅ×ÏÓÈÏÄÉÔ c), Á ÚÁÔÅÍ x É y. ôÅÐÅÒØ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÐÁÒ
ÍÏÖÎÏ ÚÁÍÅÎÉÔØ ËÏÎÅÞÎÙÍ ÍÎÏÖÅÓÔ×ÏÍ ÉÈ ËÏÄÏ×, ËÏÔÏÒÏÅ × Ó×ÏÀ ÏÞÅÒÅÄØ
ÍÏÖÎÏ ÚÁËÏÄÉÒÏ×ÁÔØ ÐÁÒÏÊ ÞÉÓÅÌ.
úÁÄÁÞÁ 146. ðÒÏ×ÅÄÉÔÅ ÜÔÏ ÒÁÓÓÕÖÄÅÎÉÅ ÐÏÄÒÏÂÎÏ.
úÁÄÁÞÁ 147. ðÏËÁÖÉÔÅ, ÞÔÏ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔ ¥x ÅÓÔØ n-ÏÅ ÐÏ
ÐÏÒÑÄËÕ ÐÒÏÓÔÏÅ ÞÉÓÌÏ¥ ÁÒÉÆÍÅÔÉÞÅÎ.
§5. îÅ×ÙÒÁÚÉÍÙÅ ÐÒÅÄÉËÁÔÙ: Á×ÔÏÍÏÒÆÉÚÍÙ
íÙ ×ÉÄÅÌÉ, ËÁË ÍÏÖÎÏ ÄÏËÁÚÁÔØ ×ÙÒÁÚÉÍÏÓÔØ ÎÅËÏÔÏÒÙÈ Ó×ÏÊÓÔ×. óÅÊÞÁÓ
ÍÙ ÐÏËÁÖÅÍ, ËÁËÉÍ ÏÂÒÁÚÏÍ ÍÏÖÎÏ ÄÏËÁÚÙ×ÁÔØ ÎÅ×ÙÒÁÚÉÍÏÓÔØ.
îÁÞÎ¾Í Ó ÔÁËÏÇÏ ÐÒÉÍÅÒÁ. ðÕÓÔØ ÓÉÇÎÁÔÕÒÁ ÓÏÄÅÒÖÉÔ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅ-
ÄÉËÁÔ ÒÁ×ÅÎÓÔ×Á (=) É Ä×ÕÍÅÓÔÎÕÀ ÏÐÅÒÁÃÉÀ ÓÌÏÖÅÎÉÑ (+). òÁÓÓÍÏÔÒÉÍ Å¾
ÉÎÔÅÒÐÒÅÔÁÃÉÀ, ÎÏÓÉÔÅÌÅÍ ËÏÔÏÒÏÊ Ñ×ÌÑÀÔÓÑ ÃÅÌÙÅ ÞÉÓÌÁ, Á ÒÁ×ÅÎÓÔ×Ï É
ÓÌÏÖÅÎÉÅ ÉÎÔÅÒÐÒÅÔÉÒÕÀÔÓÑ ÓÔÁÎÄÁÒÔÎÙÍ ÏÂÒÁÚÏÍ. ïËÁÚÙ×ÁÅÔÓÑ, ÞÔÏ ÐÒÅ-
ÄÉËÁÔ x > y ÎÅ Ñ×ÌÑÅÔÓÑ ×ÙÒÁÚÉÍÙÍ.
ðÒÉÞÉÎÁ ÏÞÅ×ÉÄÎÁ: Ó ÔÏÞËÉ ÚÒÅÎÉÑ ÓÌÏÖÅÎÉÑ ÃÅÌÙÅ ÞÉÓÌÁ ÕÓÔÒÏÅÎÙ ÓÉÍ-
ÍÅÔÒÉÞÎÏ, ÐÏÌÏÖÉÔÅÌØÎÙÅ ÎÉÞÅÍ ÎÅ ÏÔÌÉÞÁÀÔÓÑ ÏÔ ÏÔÒÉÃÁÔÅÌØÎÙÈ. åÓÌÉ
ÍÙ ÉÚÍÅÎÉÍ ÚÎÁË Õ ×ÓÅÈ ÐÅÒÅÍÅÎÎÙÈ, ×ÈÏÄÑÝÉÈ × ÆÏÒÍÕÌÕ, ÔÏ Å¾ ÉÓÔÉÎÎÏÓÔØ
ÎÅ ÍÏÖÅÔ ÉÚÍÅÎÉÔØÓÑ. îÏ ÐÒÉ ÜÔÏÍ x > y ÚÁÍÅÎÉÔÓÑ ÎÁ x < y, É ÐÏÔÏÍÕ ÜÔÏ
Ó×ÏÊÓÔ×Ï ÎÅ Ñ×ÌÑÅÔÓÑ ×ÙÒÁÚÉÍÙÍ.
112 çÌÁ×Á V. ñÚÙËÉ ÐÅÒ×ÏÇÏ ÐÏÒÑÄËÁ
ÞÉÓÅÌ ÍÏÖÎÏ ËÏÄÉÒÏ×ÁÔØ ÐÁÒÁÍÉ ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ × ÏÐÉÓÁÎÎÏÍ ÓÍÙÓÌÅ.
ôÅÐÅÒØ ÍÙ ÍÏÖÅÍ ×ÙÒÁÚÉÔØ, ÞÔÏ ÞÉÓÌÏ x Ñ×ÌÑÅÔÓÑ ÓÔÅÐÅÎØÀ ÞÉÓÌÁ 4,
ÓÌÅÄÕÀÝÉÍ ÏÂÒÁÚÏÍ: ÓÕÝÅÓÔ×ÕÅÔ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï U, ËÏÔÏÒÏÅ ÓÏÄÅÒÖÉÔ
ÞÉÓÌÏ x É ÏÂÌÁÄÁÅÔ ÔÁËÉÍ Ó×ÏÊÓÔ×ÏÍ: ×ÓÑËÉÊ ÜÌÅÍÅÎÔ u ∈ U ÌÉÂÏ ÒÁ×ÅÎ 1,
ÌÉÂÏ ÄÅÌÉÔÓÑ ÎÁ 4 É u/4 ÔÁËÖÅ ÐÒÉÎÁÄÌÅÖÉÔ U. ôÅÐÅÒØ ÎÁÄÏ ×ÅÚÄÅ ÚÁÍÅÎÉÔØ
ÍÎÏÖÅÓÔ×Ï U ÎÁ ÅÇÏ ËÏÄ u1, u2, Á ÕÔ×ÅÒÖÄÅÎÉÅ x ∈ U ÎÁ S(x, u1, u2), ÇÄÅ S ¡
ÐÏÓÔÒÏÅÎÎÙÊ ÎÁÍÉ ËÏÄÉÒÕÀÝÉÊ ÐÒÅÄÉËÁÔ.
îÅÍÎÏÇÏ ÓÌÏÖÎÅÅ ×ÙÒÁÚÉÔØ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔ x = 4k . úÄÅÓØ ÎÁÍ ÈÏ-
ÔÅÌÏÓØ ÂÙ ÓËÁÚÁÔØ ÔÁË: ÓÕÝÅÓÔ×ÕÅÔ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ x0, x1, . . . , xk , ÄÌÑ
ËÏÔÏÒÏÊ x0 = 1, ËÁÖÄÙÊ ÓÌÅÄÕÀÝÉÊ ÞÌÅÎ ×ÞÅÔ×ÅÒÏ ÂÏÌØÛÅ ÐÒÅÄÙÄÕÝÅ-
ÇÏ (xi+1 = 4xi) É xk = x. ëÁË ÎÁÕÞÉÔØÓÑ ÇÏ×ÏÒÉÔØ Ï ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏ-
ÓÔÑÈ, ÅÓÌÉ ÍÙ ÕÍÅÅÍ ÇÏ×ÏÒÉÔØ Ï ÍÎÏÖÅÓÔ×ÁÈ? ÷ÓÐÏÍÎÉÍ, ÞÔÏ × ÔÅÒÍÉ-
ÎÁÈ ÔÅÏÒÉÉ ÍÎÏÖÅÓÔ× ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÅÓÔØ ÆÕÎËÃÉÑ, ÏÐÒÅÄÅ̾ÎÎÁÑ ÎÁ
ÎÁÞÁÌØÎÏÍ ÏÔÒÅÚËÅ ÎÁÔÕÒÁÌØÎÏÇÏ ÒÑÄÁ, ÔÏ ÅÓÔØ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÐÁÒ
{h0, x0i, h1, x1i, . . . , hk, xk i}. ðÁÒÙ ÍÏÖÎÏ ËÏÄÉÒÏ×ÁÔØ ÞÉÓÌÁÍÉ. îÁÐÒÉÍÅÒ,
ÍÏÖÎÏ ÓÞÉÔÁÔØ ËÏÄÏÍ ÐÁÒÙ hx, yi ÞÉÓÌÏ c = (x + y)2 + x, ÐÏÓËÏÌØËÕ ÐÏ ÎÅÍÕ
ÁÒÉÆÍÅÔÉÞÅÓËÉ ×ÏÓÓÔÁÎÁ×ÌÉ×ÁÅÔÓÑ x + y (ËÁË ÎÁÉÂÏÌØÛÅÅ ÞÉÓÌÏ, Ë×ÁÄÒÁÔ
ËÏÔÏÒÏÇÏ ÎÅ ÐÒÅ×ÏÓÈÏÄÉÔ c), Á ÚÁÔÅÍ x É y. ôÅÐÅÒØ ËÏÎÅÞÎÏÅ ÍÎÏÖÅÓÔ×Ï ÐÁÒ
ÍÏÖÎÏ ÚÁÍÅÎÉÔØ ËÏÎÅÞÎÙÍ ÍÎÏÖÅÓÔ×ÏÍ ÉÈ ËÏÄÏ×, ËÏÔÏÒÏÅ × Ó×ÏÀ ÏÞÅÒÅÄØ
ÍÏÖÎÏ ÚÁËÏÄÉÒÏ×ÁÔØ ÐÁÒÏÊ ÞÉÓÅÌ.
úÁÄÁÞÁ 146. ðÒÏ×ÅÄÉÔÅ ÜÔÏ ÒÁÓÓÕÖÄÅÎÉÅ ÐÏÄÒÏÂÎÏ.
úÁÄÁÞÁ 147. ðÏËÁÖÉÔÅ, ÞÔÏ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅÄÉËÁÔ ¥x ÅÓÔØ n-ÏÅ ÐÏ
ÐÏÒÑÄËÕ ÐÒÏÓÔÏÅ ÞÉÓÌÏ¥ ÁÒÉÆÍÅÔÉÞÅÎ.
§5. îÅ×ÙÒÁÚÉÍÙÅ ÐÒÅÄÉËÁÔÙ: Á×ÔÏÍÏÒÆÉÚÍÙ
íÙ ×ÉÄÅÌÉ, ËÁË ÍÏÖÎÏ ÄÏËÁÚÁÔØ ×ÙÒÁÚÉÍÏÓÔØ ÎÅËÏÔÏÒÙÈ Ó×ÏÊÓÔ×. óÅÊÞÁÓ
ÍÙ ÐÏËÁÖÅÍ, ËÁËÉÍ ÏÂÒÁÚÏÍ ÍÏÖÎÏ ÄÏËÁÚÙ×ÁÔØ ÎÅ×ÙÒÁÚÉÍÏÓÔØ.
îÁÞÎ¾Í Ó ÔÁËÏÇÏ ÐÒÉÍÅÒÁ. ðÕÓÔØ ÓÉÇÎÁÔÕÒÁ ÓÏÄÅÒÖÉÔ Ä×ÕÍÅÓÔÎÙÊ ÐÒÅ-
ÄÉËÁÔ ÒÁ×ÅÎÓÔ×Á (=) É Ä×ÕÍÅÓÔÎÕÀ ÏÐÅÒÁÃÉÀ ÓÌÏÖÅÎÉÑ (+). òÁÓÓÍÏÔÒÉÍ Å¾
ÉÎÔÅÒÐÒÅÔÁÃÉÀ, ÎÏÓÉÔÅÌÅÍ ËÏÔÏÒÏÊ Ñ×ÌÑÀÔÓÑ ÃÅÌÙÅ ÞÉÓÌÁ, Á ÒÁ×ÅÎÓÔ×Ï É
ÓÌÏÖÅÎÉÅ ÉÎÔÅÒÐÒÅÔÉÒÕÀÔÓÑ ÓÔÁÎÄÁÒÔÎÙÍ ÏÂÒÁÚÏÍ. ïËÁÚÙ×ÁÅÔÓÑ, ÞÔÏ ÐÒÅ-
ÄÉËÁÔ x > y ÎÅ Ñ×ÌÑÅÔÓÑ ×ÙÒÁÚÉÍÙÍ.
ðÒÉÞÉÎÁ ÏÞÅ×ÉÄÎÁ: Ó ÔÏÞËÉ ÚÒÅÎÉÑ ÓÌÏÖÅÎÉÑ ÃÅÌÙÅ ÞÉÓÌÁ ÕÓÔÒÏÅÎÙ ÓÉÍ-
ÍÅÔÒÉÞÎÏ, ÐÏÌÏÖÉÔÅÌØÎÙÅ ÎÉÞÅÍ ÎÅ ÏÔÌÉÞÁÀÔÓÑ ÏÔ ÏÔÒÉÃÁÔÅÌØÎÙÈ. åÓÌÉ
ÍÙ ÉÚÍÅÎÉÍ ÚÎÁË Õ ×ÓÅÈ ÐÅÒÅÍÅÎÎÙÈ, ×ÈÏÄÑÝÉÈ × ÆÏÒÍÕÌÕ, ÔÏ Å¾ ÉÓÔÉÎÎÏÓÔØ
ÎÅ ÍÏÖÅÔ ÉÚÍÅÎÉÔØÓÑ. îÏ ÐÒÉ ÜÔÏÍ x > y ÚÁÍÅÎÉÔÓÑ ÎÁ x < y, É ÐÏÔÏÍÕ ÜÔÏ
Ó×ÏÊÓÔ×Ï ÎÅ Ñ×ÌÑÅÔÓÑ ×ÙÒÁÚÉÍÙÍ.
Страницы
- « первая
- ‹ предыдущая
- …
- 110
- 111
- 112
- 113
- 114
- …
- следующая ›
- последняя »
