Математическая логика и теория алгоритмов. Самохин А.В. - 168 стр.

UptoLike

Составители: 

Рубрика: 

çìá÷á X
ôÅÏÒÅÍÁ Ï ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÅ
§1. îÅÐÏÄ×ÉÖÎÁÑ ÔÏÞËÁ É ÏÔÎÏÛÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ
ôÅÏÒÅÍÁ 65. ðÕÓÔØ U ¡ ÇÌÁ×ÎÁÑ ×ÙÞÉÓÌÉÍÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎËÃÉÑ
ÄÌÑ ËÌÁÓÓÁ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ ÏÄÎÏÇÏ ÁÒÇÕÍÅÎÔÁ, Á h ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ
×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ ÏÄÎÏÇÏ ÁÒÇÕÍÅÎÔÁ. ôÏÇÄÁ ÓÕÝÅ-
ÓÔ×ÕÅÔ ÔÁËÏÅ ÞÉÓÌÏ n, ÞÔÏ U
n
= U
h(n)
, ÔÏ ÅÓÔØ n É h(n) ¡ ÎÏÍÅÒÁ ÏÄÎÏÊ
ÆÕÎËÃÉÉ.
äÒÕÇÉÍÉ ÓÌÏ×ÁÍÉ, ÎÅÌØÚÑ ÎÁÊÔÉ ÁÌÇÏÒÉÔÍÁ, ÐÒÅÏÂÒÁÚÕÀÝÅÇÏ ÐÒÏÇÒÁÍÍÙ,
ËÏÔÏÒÙÊ ÂÙ ÐÏ ËÁÖÄÏÊ ÐÒÏÇÒÁÍÍÅ ÄÁ×ÁÌ ÄÒÕÇÕÀ (ÎÅ ÜË×É×ÁÌÅÎÔÎÕÀ ÅÊ). üÔÕ
ÔÅÏÒÅÍÕ ÎÁÚÙ×ÁÀÔ ÔÅÏÒÅÍÏÊ ëÌÉÎÉ Ï ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÅ ÉÌÉ ÔÅÏÒÅÍÏÊ Ï
ÒÅËÕÒÓÉÉ.
äÏËÁÚÁÔÅÌØÓÔ×Ï. íÙ ÂÕÄÅÍ ÄÅÊÓÔ×Ï×ÁÔØ ÐÏ ÁÎÁÌÏÇÉÉ Ó ÐÏÓÔÒÏÅÎÉÅÍ ×Ù-
ÞÉÓÌÉÍÏÊ ÆÕÎËÃÉÉ, ÎÅ ÉÍÅÀÝÅÊ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÏÇÏ ×ÙÞÉÓÌÉÍÏÇÏ ÐÒÏÄÏÌ-
ÖÅÎÉÑ (ÇÌÁ×Á VIII).
òÁÓÓÍÏÔÒÉÍ ÐÒÏÉÚ×ÏÌØÎÏÅ ÏÔÎÏÛÅÎÉÅ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ (ËÏÔÏÒÏÅ ÍÙ ÂÕ-
ÄÅÍ ÏÂÏÚÎÁÞÁÔØ x y) ÎÁ ÍÎÏÖÅÓÔ×Å ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ. íÙ ÐÏËÁÖÅÍ, ÞÔÏ
ÓÌÅÄÕÀÝÉÅ Ä×Á Ó×ÏÊÓÔ×Á ÜÔÏÇÏ ÏÔÎÏÛÅÎÉÑ ÎÅ ÍÏÇÕÔ ×ÙÐÏÌÎÑÔØÓÑ ÏÄÎÏ×ÒÅ-
ÍÅÎÎÏ:
äÌÑ ×ÓÑËÏÊ ×ÙÞÉÓÌÉÍÏÊ ÆÕÎËÃÉÉ f ÓÕÝÅÓÔ×ÕÅÔ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ
×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ g, Ñ×ÌÑÀÝÁÑÓÑ Å¾ -ÐÒÏÄÏÌÖÅÎÉÅÍ (ÜÔÏ ÏÚÎÁÞÁ-
ÅÔ, ÞÔÏ ÅÓÌÉ f(x) ÏÐÒÅÄÅÌÅÎÏ ÐÒÉ ÎÅËÏÔÏÒÏÍ x, ÔÏ g(x) f(x)).
óÕÝÅÓÔ×ÕÅÔ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ h, ÎÅ ÉÍÅÀÝÁÑ
-ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÉ (ÔÏ ÅÓÔØ ÆÕÎËÃÉÑ, ÄÌÑ ËÏÔÏÒÏÊ n 6≡ h(n) ÄÌÑ
×ÓÅÈ n).
åÓÌÉ x y ¡ ÏÔÎÏÛÅÎÉÅ ÒÁ×ÅÎÓÔ×Á (x = y), ÔÏ ×ÔÏÒÏÅ Ó×ÏÊÓÔ×Ï ×Ù-
ÐÏÌÎÅÎÏ (ÐÏÌÏÖÉÍ, ÎÁÐÒÉÍÅÒ, h(n) = n + 1), ÐÏÜÔÏÍÕ ÎÅ ×ÙÐÏÌÎÅÎÏ ÐÅÒ×ÏÅ.
ôÅÏÒÅÍÁ Ï ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÅ ÐÏÌÕÞÉÔÓÑ, ÅÓÌÉ x y U
x
= U
y
(x É y ¡
ÎÏÍÅÒÁ ÏÄÎÏÊ É ÔÏÊ ÖÅ ÆÕÎËÃÉÉ). ÷ ÜÔÏÍ ÓÌÕÞÁÅ ×ÙÐÏÌÎÅÎÏ ÐÅÒ×ÏÅ Ó×ÏÊÓÔ×Ï,
ËÁË ÍÙ ÓÅÊÞÁÓ ÕÂÅÄÉÍÓÑ, É ÐÏÔÏÍÕ ÎÅ ×ÙÐÏÌÎÅÎÏ ×ÔÏÒÏÅ.
ðÏÞÅÍÕ ×ÙÐÏÌÎÅÎÏ ÐÅÒ×ÏÅ Ó×ÏÊÓÔ×Ï? ðÕÓÔØ f ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ ×ÙÞÉÓÌÉ-
ÍÁÑ ÆÕÎËÃÉÑ ÏÄÎÏÇÏ ÁÒÇÕÍÅÎÔÁ. òÁÓÓÍÏÔÒÉÍ ÆÕÎËÃÉÀ V (n, x) = U(f(n), x).
ðÏÓËÏÌØËÕ U Ñ×ÌÑÅÔÓÑ ÇÌÁ×ÎÏÊ ÕÎÉ×ÅÒÓÁÌØÎÏÊ ÆÕÎËÃÉÅÊ, ÎÁÊľÔÓÑ ×ÓÀ-
ÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ ÆÕÎËÃÉÑ s, ÄÌÑ ËÏÔÏÒÏÊ V (n, x) = U(s(n), x) ÐÒÉ ×ÓÅÈ n
168
                           çìá÷á X
          ôÅÏÒÅÍÁ Ï ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÅ

  §1. îÅÐÏÄ×ÉÖÎÁÑ ÔÏÞËÁ É ÏÔÎÏÛÅÎÉÑ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ
  ôÅÏÒÅÍÁ 65. ðÕÓÔØ U ¡ ÇÌÁ×ÎÁÑ ×ÙÞÉÓÌÉÍÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎËÃÉÑ
ÄÌÑ ËÌÁÓÓÁ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ ÏÄÎÏÇÏ ÁÒÇÕÍÅÎÔÁ, Á h ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ
×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ ÏÄÎÏÇÏ ÁÒÇÕÍÅÎÔÁ. ôÏÇÄÁ ÓÕÝÅ-
ÓÔ×ÕÅÔ ÔÁËÏÅ ÞÉÓÌÏ n, ÞÔÏ Un = Uh(n) , ÔÏ ÅÓÔØ n É h(n) ¡ ÎÏÍÅÒÁ ÏÄÎÏÊ
ÆÕÎËÃÉÉ.
   äÒÕÇÉÍÉ ÓÌÏ×ÁÍÉ, ÎÅÌØÚÑ ÎÁÊÔÉ ÁÌÇÏÒÉÔÍÁ, ÐÒÅÏÂÒÁÚÕÀÝÅÇÏ ÐÒÏÇÒÁÍÍÙ,
ËÏÔÏÒÙÊ ÂÙ ÐÏ ËÁÖÄÏÊ ÐÒÏÇÒÁÍÍÅ ÄÁ×ÁÌ ÄÒÕÇÕÀ (ÎÅ ÜË×É×ÁÌÅÎÔÎÕÀ ÅÊ). üÔÕ
ÔÅÏÒÅÍÕ ÎÁÚÙ×ÁÀÔ ÔÅÏÒÅÍÏÊ ëÌÉÎÉ Ï ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÅ ÉÌÉ ÔÅÏÒÅÍÏÊ Ï
ÒÅËÕÒÓÉÉ.
   äÏËÁÚÁÔÅÌØÓÔ×Ï. íÙ ÂÕÄÅÍ ÄÅÊÓÔ×Ï×ÁÔØ ÐÏ ÁÎÁÌÏÇÉÉ Ó ÐÏÓÔÒÏÅÎÉÅÍ ×Ù-
ÞÉÓÌÉÍÏÊ ÆÕÎËÃÉÉ, ÎÅ ÉÍÅÀÝÅÊ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÏÇÏ ×ÙÞÉÓÌÉÍÏÇÏ ÐÒÏÄÏÌ-
ÖÅÎÉÑ (ÇÌÁ×Á VIII).
   òÁÓÓÍÏÔÒÉÍ ÐÒÏÉÚ×ÏÌØÎÏÅ ÏÔÎÏÛÅÎÉÅ ÜË×É×ÁÌÅÎÔÎÏÓÔÉ (ËÏÔÏÒÏÅ ÍÙ ÂÕ-
ÄÅÍ ÏÂÏÚÎÁÞÁÔØ x ≡ y) ÎÁ ÍÎÏÖÅÓÔ×Å ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ. íÙ ÐÏËÁÖÅÍ, ÞÔÏ
ÓÌÅÄÕÀÝÉÅ Ä×Á Ó×ÏÊÓÔ×Á ÜÔÏÇÏ ÏÔÎÏÛÅÎÉÑ ÎÅ ÍÏÇÕÔ ×ÙÐÏÌÎÑÔØÓÑ ÏÄÎÏ×ÒÅ-
ÍÅÎÎÏ:
    • äÌÑ ×ÓÑËÏÊ ×ÙÞÉÓÌÉÍÏÊ ÆÕÎËÃÉÉ f ÓÕÝÅÓÔ×ÕÅÔ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ
      ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ g, Ñ×ÌÑÀÝÁÑÓÑ Å¾ ≡-ÐÒÏÄÏÌÖÅÎÉÅÍ (ÜÔÏ ÏÚÎÁÞÁ-
      ÅÔ, ÞÔÏ ÅÓÌÉ f (x) ÏÐÒÅÄÅÌÅÎÏ ÐÒÉ ÎÅËÏÔÏÒÏÍ x, ÔÏ g(x) ≡ f (x)).
    • óÕÝÅÓÔ×ÕÅÔ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ h, ÎÅ ÉÍÅÀÝÁÑ
      ≡-ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÉ (ÔÏ ÅÓÔØ ÆÕÎËÃÉÑ, ÄÌÑ ËÏÔÏÒÏÊ n 6≡ h(n) ÄÌÑ
      ×ÓÅÈ n).
   åÓÌÉ x ≡ y ¡ ÏÔÎÏÛÅÎÉÅ ÒÁ×ÅÎÓÔ×Á (x = y), ÔÏ ×ÔÏÒÏÅ Ó×ÏÊÓÔ×Ï ×Ù-
ÐÏÌÎÅÎÏ (ÐÏÌÏÖÉÍ, ÎÁÐÒÉÍÅÒ, h(n) = n + 1), ÐÏÜÔÏÍÕ ÎÅ ×ÙÐÏÌÎÅÎÏ ÐÅÒ×ÏÅ.
ôÅÏÒÅÍÁ Ï ÎÅÐÏÄ×ÉÖÎÏÊ ÔÏÞËÅ ÐÏÌÕÞÉÔÓÑ, ÅÓÌÉ x ≡ y ←→ Ux = Uy (x É y ¡
ÎÏÍÅÒÁ ÏÄÎÏÊ É ÔÏÊ ÖÅ ÆÕÎËÃÉÉ). ÷ ÜÔÏÍ ÓÌÕÞÁÅ ×ÙÐÏÌÎÅÎÏ ÐÅÒ×ÏÅ Ó×ÏÊÓÔ×Ï,
ËÁË ÍÙ ÓÅÊÞÁÓ ÕÂÅÄÉÍÓÑ, É ÐÏÔÏÍÕ ÎÅ ×ÙÐÏÌÎÅÎÏ ×ÔÏÒÏÅ.
   ðÏÞÅÍÕ ×ÙÐÏÌÎÅÎÏ ÐÅÒ×ÏÅ Ó×ÏÊÓÔ×Ï? ðÕÓÔØ f ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ ×ÙÞÉÓÌÉ-
ÍÁÑ ÆÕÎËÃÉÑ ÏÄÎÏÇÏ ÁÒÇÕÍÅÎÔÁ. òÁÓÓÍÏÔÒÉÍ ÆÕÎËÃÉÀ V (n, x) = U(f (n), x).
ðÏÓËÏÌØËÕ U Ñ×ÌÑÅÔÓÑ ÇÌÁ×ÎÏÊ ÕÎÉ×ÅÒÓÁÌØÎÏÊ ÆÕÎËÃÉÅÊ, ÎÁÊľÔÓÑ ×ÓÀ-
ÄÕ ÏÐÒÅÄÅ̾ÎÎÁÑ ÆÕÎËÃÉÑ s, ÄÌÑ ËÏÔÏÒÏÊ V (n, x) = U(s(n), x) ÐÒÉ ×ÓÅÈ n
                                     168