Математическая логика и теория алгоритмов. Самохин А.В. - 186 стр.

UptoLike

Составители: 

Рубрика: 

186 çÌÁ×Á XII. áÒÉÆÍÅÔÉÞÎÏÓÔØ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ
äÏËÁÚÁÔÅÌØÓÔ×Ï. óÏÇÌÁÓÎÏ ÐÒÅÄÙÄÕÝÅÊ ÌÅÍÍÅ, ÄÅÌÉÔÅÌÉ b(i+1)+1 ÍÏÖÎÏ
×ÚÑÔØ ×ÚÁÉÍÎÏ ÐÒÏÓÔÙÍÉ ÓËÏÌØ ÕÇÏÄÎÏ ÂÏÌØÛÉÍÉ), ÏÓÔÁ¾ÔÓÑ ×ÏÓÐÏÌØÚÏ-
×ÁÔØÓÑ ¥ËÉÔÁÊÓËÏÊ ÔÅÏÒÅÍÏÊ Ï ÏÓÔÁÔËÁÈ¥. üÔÁ ÔÅÏÒÅÍÁ ÕÔ×ÅÒÖÄÁÅÔ, ÞÔÏ
ÅÓÌÉ ÃÅÌÙÅ ÐÏÌÏÖÉÔÅÌØÎÙÅ ÞÉÓÌÁ d
1
, . . . , d
k
×ÚÁÉÍÎÏ ÐÒÏÓÔÙ, ÔÏ ÐÒÉ ÄÅÌÅ-
ÎÉÉ ÃÅÌÏÇÏ u ÎÁ ÎÉÈ ÍÏÖÅÔ ÐÏÌÕÞÉÔØÓÑ ÌÀÂÏÊ ÚÁÄÁÎÎÙÊ ÎÁÂÏÒ ÏÓÔÁÔËÏ×. ÷
ÓÁÍÏÍ ÄÅÌÅ, ÔÁËÉÈ ÎÁÂÏÒÏ× ÂÕÄÅÔ d
1
d
2
. . . d
k
(ÐÏÓËÏÌØËÕ ÐÒÉ ÄÅÌÅÎÉÉ ÎÁ d
i
×ÏÚ-
ÍÏÖÎÙ ÏÓÔÁÔËÉ ÏÔ 0 ÄÏ d
i
1). ðÒÉ ÄÅÌÅÎÉÉ ÞÉÓÅÌ u = 0, 1, . . . , d
1
d
2
. . . d
k
1
ÐÏÌÕÞÁÀÔÓÑ ÒÁÚÎÙÅ ÎÁÂÏÒÙ ÏÓÔÁÔËÏ× (ÅÓÌÉ Ä×Á ÞÉÓÌÁ u
0
É u
00
ÄÁÀÔ ÏÄÉÎÁ-
ËÏ×ÙÅ ÏÓÔÁÔËÉ, ÔÏ ÉÈ ÒÁÚÎÏÓÔØ ÄÅÌÉÔÓÑ ÎÁ ×ÓÅ d
i
, ÞÔÏ ÎÅ×ÏÚÍÏÖÎÏ × ÓÉÌÕ
×ÚÁÉÍÎÏÊ ÐÒÏÓÔÏÔÙ). ðÏÜÔÏÍÕ ÞÉÓÅÌ ÓÔÏÌØËÏ ÖÅ, ÓËÏÌØËÏ ÎÁÂÏÒÏ× ÏÓÔÁÔËÏ×,
É ÄÏÌÖÎÙ ÐÏÑ×ÉÔØÓÑ ×ÓÅ ÎÁÂÏÒÙ. ìÅÍÍÁ 2 ÄÏËÁÚÁÎÁ.
üÔÁ ÌÅÍÍÁ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÐÒÏÉÚ×ÏÌØÎÏÊ ÄÌÉÎÙ
ÍÏÖÎÏ ÚÁËÏÄÉÒÏ×ÁÔØ ÔÒÅÍÑ ÞÉÓÌÁÍÉ a, b É n (ÐÏÓÌÅÄÎÅÅ ÞÉÓÌÏ ¡ ÄÌÉÎÁ ÐÏ-
ÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÉ). ôÁËÉÍ ÏÂÒÁÚÏÍ, ÕÓÌÏ×ÎÏ ÇÏ×ÏÒÑ, ÍÏÖÎÏ ÚÁÍÅÎÉÔØ ¥ÆÏÒ-
ÍÕÌÕ¥
∃hx
0
, . . . , x
n
i(i 6 n)[. . . x
i
. . . ]
ÏÔÏÒÁÑ ÎÁ ÓÁÍÏÍ ÄÅÌÅ ÎÅ Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÏÊ ÆÏÒÍÕÌÏÊ, ÔÁË ËÁË ÓÏ-
ÄÅÒÖÉÔ Ë×ÁÎÔÏÒ ÐÏ ËÏÎÅÞÎÙÍ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÑÍ) ÎÁ ÆÏÒÍÕÌÕ
a b n (i 6 n)[. . . (ÏÓÔÁÔÏË ÏÔ ÄÅÌÅÎÉÑ a ÎÁ b(i + 1) + 1) . . . ].
íÙ ÂÕÄÅÍ ÚÁÐÉÓÙ×ÁÔØ ÏÓÔÁÔÏË ÏÔ ÄÅÌÅÎÉÑ a ÎÁ b(i + 1) + 1 ËÁË β(a, b, i)
(ÏÔÓÀÄÁ É ÎÁÚ×ÁÎÉÅ ¥ÂÅÔÁ-ÆÕÎËÃÉÑ¥).
÷ÏÚ×ÒÁÝÁÑÓØ Ë ÐÒÏÇÒÁÍÍÅ P Ó ËÏÎÅÞÎÙÍ ÞÉÓÌÏÍ ÐÅÒÅÍÅÎÎÙÈ k
1
, . . . , k
N
É
×ÙÞÉÓÌÑÅÍÏÊ ÅÊ ÆÕÎËÃÉÉ f, ÍÏÖÎÏ ÚÁÐÉÓÁÔØ ÕÔ×ÅÒÖÄÅÎÉÅ ×ÉÄÁ f (x) = y ÔÁË:
ÓÕÝÅÓÔ×ÕÀÔ ÔÁËÏÅ ÞÉÓÌÏ ÛÁÇÏ× n É ÔÁËÉÅ ÞÉÓÌÁ a
1
, b
1
, a
2
, b
2
, . . . , a
N
, b
N
, a, b,
ÞÔÏ
β(a
1
, b
1
, 0), . . . , β(a
N
, b
N
, 0) ÅÓÔØ ÐÒÁ×ÉÌØÎÙÅ ÎÁÞÁÌØÎÙÅ ÚÎÁÞÅÎÉÑ ÐÅÒÅ-
ÍÅÎÎÙÈ (ÐÅÒ×ÏÅ ÒÁ×ÎÏ x, ÏÓÔÁÌØÎÙÅ ÒÁ×ÎÙ 0); β(a, b, 0) ÅÓÔØ ÐÒÁ×ÉÌØ-
ÎÏÅ ÎÁÞÁÌØÎÏÅ ÚÎÁÞÅÎÉÑ ÓÞ¾ÔÞÉËÁ ËÏÍÁÎÄ, ÔÏ ÅÓÔØ 1;
ÄÌÑ ËÁÖÄÏÇÏ i ÏÔ 0 ÄÏ n 1 ÉÍÅÅÔ ÍÅÓÔÏ
Step(β(a
1
, b
1
, i), . . . , β(a
N
, b
N
, i), β(a, b, i),
β(a
1
, b
1
, i + 1), . . . , β(a
N
, b
N
, i + 1), β(a, b, i + 1)),
ÔÏ ÅÓÔØ ËÁÖÄÙÊ ÐÅÒÅÈÏÄ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÒÏÇÒÁÍÍÅ;
β(a
2
, b
2
, n) = y (ÚÎÁÞÅÎÉÅ ×ÙÈÏÄÎÏÊ ÐÅÒÅÍÅÎÎÏÊ k
2
× ËÏÎÃÅ ×ÙÞÉÓÌÅÎÉÑ
ÒÁ×ÎÏ y) É β(a, b, n) = 0 (ÚÎÁÞÅÎÉÅ ÓÞ¾ÔÞÉËÁ ËÏÍÁÎÄ × ËÏÎÃÅ ×ÙÞÉÓÌÅ-
ÎÉÑ ÒÁ×ÎÏ 0, ÞÔÏ ÐÏ ÎÁÛÅÊ ÄÏÇÏ×ÏÒ¾ÎÎÏÓÔÉ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÏÓÔÁÎÏ×ËÅ
ÍÁÛÉÎÙ).
éÔÁË, ÁÒÉÆÍÅÔÉÞÎÏÓÔØ ×ÙÞÉÓÌÉÍÙÈ (ÎÁ ÍÁÛÉÎÁÈ Ó ËÏÎÅÞÎÙÍ ÞÉÓÌÏÍ ÐÅÒÅ-
ÍÅÎÎÙÈ) ÆÕÎËÃÉÊ ÄÏËÁÚÁÎÁ.
186                         çÌÁ×Á XII. áÒÉÆÍÅÔÉÞÎÏÓÔØ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ

   äÏËÁÚÁÔÅÌØÓÔ×Ï. óÏÇÌÁÓÎÏ ÐÒÅÄÙÄÕÝÅÊ ÌÅÍÍÅ, ÄÅÌÉÔÅÌÉ b(i+1)+1 ÍÏÖÎÏ
×ÚÑÔØ ×ÚÁÉÍÎÏ ÐÒÏÓÔÙÍÉ (É ÓËÏÌØ ÕÇÏÄÎÏ ÂÏÌØÛÉÍÉ), ÏÓÔÁ¾ÔÓÑ ×ÏÓÐÏÌØÚÏ-
×ÁÔØÓÑ ¥ËÉÔÁÊÓËÏÊ ÔÅÏÒÅÍÏÊ Ï ÏÓÔÁÔËÁÈ¥. üÔÁ ÔÅÏÒÅÍÁ ÕÔ×ÅÒÖÄÁÅÔ, ÞÔÏ
ÅÓÌÉ ÃÅÌÙÅ ÐÏÌÏÖÉÔÅÌØÎÙÅ ÞÉÓÌÁ d1, . . . , dk ×ÚÁÉÍÎÏ ÐÒÏÓÔÙ, ÔÏ ÐÒÉ ÄÅÌÅ-
ÎÉÉ ÃÅÌÏÇÏ u ÎÁ ÎÉÈ ÍÏÖÅÔ ÐÏÌÕÞÉÔØÓÑ ÌÀÂÏÊ ÚÁÄÁÎÎÙÊ ÎÁÂÏÒ ÏÓÔÁÔËÏ×. ÷
ÓÁÍÏÍ ÄÅÌÅ, ÔÁËÉÈ ÎÁÂÏÒÏ× ÂÕÄÅÔ d1 d2 . . . dk (ÐÏÓËÏÌØËÕ ÐÒÉ ÄÅÌÅÎÉÉ ÎÁ di ×ÏÚ-
ÍÏÖÎÙ ÏÓÔÁÔËÉ ÏÔ 0 ÄÏ di − 1). ðÒÉ ÄÅÌÅÎÉÉ ÞÉÓÅÌ u = 0, 1, . . . , d1d2 . . . dk − 1
ÐÏÌÕÞÁÀÔÓÑ ÒÁÚÎÙÅ ÎÁÂÏÒÙ ÏÓÔÁÔËÏ× (ÅÓÌÉ Ä×Á ÞÉÓÌÁ u0 É u00 ÄÁÀÔ ÏÄÉÎÁ-
ËÏ×ÙÅ ÏÓÔÁÔËÉ, ÔÏ ÉÈ ÒÁÚÎÏÓÔØ ÄÅÌÉÔÓÑ ÎÁ ×ÓÅ di , ÞÔÏ ÎÅ×ÏÚÍÏÖÎÏ × ÓÉÌÕ
×ÚÁÉÍÎÏÊ ÐÒÏÓÔÏÔÙ). ðÏÜÔÏÍÕ ÞÉÓÅÌ ÓÔÏÌØËÏ ÖÅ, ÓËÏÌØËÏ ÎÁÂÏÒÏ× ÏÓÔÁÔËÏ×,
É ÄÏÌÖÎÙ ÐÏÑ×ÉÔØÓÑ ×ÓÅ ÎÁÂÏÒÙ. ìÅÍÍÁ 2 ÄÏËÁÚÁÎÁ.
   üÔÁ ÌÅÍÍÁ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔØ ÐÒÏÉÚ×ÏÌØÎÏÊ ÄÌÉÎÙ
ÍÏÖÎÏ ÚÁËÏÄÉÒÏ×ÁÔØ ÔÒÅÍÑ ÞÉÓÌÁÍÉ a, b É n (ÐÏÓÌÅÄÎÅÅ ÞÉÓÌÏ ¡ ÄÌÉÎÁ ÐÏ-
ÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÉ). ôÁËÉÍ ÏÂÒÁÚÏÍ, ÕÓÌÏ×ÎÏ ÇÏ×ÏÒÑ, ÍÏÖÎÏ ÚÁÍÅÎÉÔØ ¥ÆÏÒ-
ÍÕÌÕ¥
                      ∃hx0 , . . . , xni(∀i 6 n)[. . . xi . . . ]
(ËÏÔÏÒÁÑ ÎÁ ÓÁÍÏÍ ÄÅÌÅ ÎÅ Ñ×ÌÑÅÔÓÑ ÁÒÉÆÍÅÔÉÞÅÓËÏÊ ÆÏÒÍÕÌÏÊ, ÔÁË ËÁË ÓÏ-
ÄÅÒÖÉÔ Ë×ÁÎÔÏÒ ÐÏ ËÏÎÅÞÎÙÍ ÐÏÓÌÅÄÏ×ÁÔÅÌØÎÏÓÔÑÍ) ÎÁ ÆÏÒÍÕÌÕ
              ∃a ∃b ∃n (∀i 6 n)[. . . (ÏÓÔÁÔÏË ÏÔ ÄÅÌÅÎÉÑ a ÎÁ b(i + 1) + 1) . . . ].
 íÙ ÂÕÄÅÍ ÚÁÐÉÓÙ×ÁÔØ ÏÓÔÁÔÏË ÏÔ ÄÅÌÅÎÉÑ a ÎÁ b(i + 1) + 1 ËÁË β(a, b, i)
(ÏÔÓÀÄÁ É ÎÁÚ×ÁÎÉÅ ¥ÂÅÔÁ-ÆÕÎËÃÉÑ¥).
   ÷ÏÚ×ÒÁÝÁÑÓØ Ë ÐÒÏÇÒÁÍÍÅ P Ó ËÏÎÅÞÎÙÍ ÞÉÓÌÏÍ ÐÅÒÅÍÅÎÎÙÈ k1, . . . , kN É
×ÙÞÉÓÌÑÅÍÏÊ ÅÊ ÆÕÎËÃÉÉ f , ÍÏÖÎÏ ÚÁÐÉÓÁÔØ ÕÔ×ÅÒÖÄÅÎÉÅ ×ÉÄÁ f (x) = y ÔÁË:
ÓÕÝÅÓÔ×ÕÀÔ ÔÁËÏÅ ÞÉÓÌÏ ÛÁÇÏ× n É ÔÁËÉÅ ÞÉÓÌÁ a1 , b1, a2 , b2, . . . , aN , bN , a, b,
ÞÔÏ
    • β(a1, b1, 0), . . . , β(aN , bN , 0) ÅÓÔØ ÐÒÁ×ÉÌØÎÙÅ ÎÁÞÁÌØÎÙÅ ÚÎÁÞÅÎÉÑ ÐÅÒÅ-
      ÍÅÎÎÙÈ (ÐÅÒ×ÏÅ ÒÁ×ÎÏ x, ÏÓÔÁÌØÎÙÅ ÒÁ×ÎÙ 0); β(a, b, 0) ÅÓÔØ ÐÒÁ×ÉÌØ-
      ÎÏÅ ÎÁÞÁÌØÎÏÅ ÚÎÁÞÅÎÉÑ ÓÞ¾ÔÞÉËÁ ËÏÍÁÎÄ, ÔÏ ÅÓÔØ 1;
    • ÄÌÑ ËÁÖÄÏÇÏ i ÏÔ 0 ÄÏ n − 1 ÉÍÅÅÔ ÍÅÓÔÏ
 Step(β(a1, b1, i), . . . , β(aN , bN , i), β(a, b, i),
                                  β(a1, b1, i + 1), . . . , β(aN , bN , i + 1), β(a, b, i + 1)),
     ÔÏ ÅÓÔØ ËÁÖÄÙÊ ÐÅÒÅÈÏÄ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÐÒÏÇÒÁÍÍÅ;
   • β(a2, b2, n) = y (ÚÎÁÞÅÎÉÅ ×ÙÈÏÄÎÏÊ ÐÅÒÅÍÅÎÎÏÊ k2 × ËÏÎÃÅ ×ÙÞÉÓÌÅÎÉÑ
     ÒÁ×ÎÏ y) É β(a, b, n) = 0 (ÚÎÁÞÅÎÉÅ ÓÞ¾ÔÞÉËÁ ËÏÍÁÎÄ × ËÏÎÃÅ ×ÙÞÉÓÌÅ-
     ÎÉÑ ÒÁ×ÎÏ 0, ÞÔÏ ÐÏ ÎÁÛÅÊ ÄÏÇÏ×ÏÒ¾ÎÎÏÓÔÉ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÏÓÔÁÎÏ×ËÅ
     ÍÁÛÉÎÙ).
éÔÁË, ÁÒÉÆÍÅÔÉÞÎÏÓÔØ ×ÙÞÉÓÌÉÍÙÈ (ÎÁ ÍÁÛÉÎÁÈ Ó ËÏÎÅÞÎÙÍ ÞÉÓÌÏÍ ÐÅÒÅ-
ÍÅÎÎÙÈ) ÆÕÎËÃÉÊ ÄÏËÁÚÁÎÁ.