Математическая логика и теория алгоритмов. Самохин А.В. - 188 стр.

UptoLike

Составители: 

Рубрика: 

188 çÌÁ×Á XII. áÒÉÆÍÅÔÉÞÎÏÓÔØ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ
ÓÔÁÎÅÔ ÓÏ×ÓÅÍ ¥ÏÓÑÚÁÅÍÙÍ¥.
üÔÁ ÔÅÏÒÅÍÁ ÎÁÚÙ×ÁÅÔÓÑ ÔÅÏÒÅÍÏÊ ôÁÒÓËÏÇÏ. å¾ ÍÏÖÎÏ ÐÒÏÞÅÓÔØ ÔÁË:
ÍÎÏÖÅÓÔ×Ï ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÉÓÔÉÎ ÎÅ ÁÒÉÆÍÅÔÉÞÎÏ. éÌÉ: ÐÏÎÑÔÉÅ ÁÒÉÆÍÅ-
ÔÉÞÅÓËÏÊ ÉÓÔÉÎÙ ÎÅ×ÙÒÁÚÉÍÏ × ÁÒÉÆÍÅÔÉËÅ.
úÁÄÁÞÁ 205. ðÏËÁÖÉÔÅ, ÞÔÏ ÄÌÑ ÌÀÂÏÇÏ N ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÉÓÔÉÎÎÙÈ
ÚÁÍËÎÕÔÙÈ ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÆÏÒÍÕÌ, ÓÏÄÅÒÖÁÝÉÈ ÎÅ ÂÏÌÅÅ N Ë×ÁÎÔÏÒÏ×,
ÁÒÉÆÍÅÔÉÞÎÏ.
úÁÄÁÞÁ 206. óÆÏÒÍÕÌÉÒÕÊÔÅ É ÄÏËÁÖÉÔÅ ÁÎÁÌÏÇÉÞÎÏÅ ÕÔ×ÅÒÖÄÅÎÉÑ
ÄÌÑ ÆÏÒÍÕÌ ÏÇÒÁÎÉÞÅÎÎÏÊ Ë×ÁÎÔÏÒÎÏÊ ÇÌÕÂÉÎÙ (ÞÉÓÌÏ ×ÌÏÖÅÎÎÙÈ Ë×ÁÎÔÏ-
ÒÏ×) É ÄÌÑ ÆÏÒÍÕÌ Ó ÏÇÒÁÎÉÞÅÎÎÙÍ ÞÉÓÌÏÍ ÐÅÒÅÍÅÎ Ë×ÁÎÔÏÒÏ× × ÐÒÅÄ×ÁÒ¾Î-
ÎÏÊ ÎÏÒÍÁÌØÎÏÊ ÆÏÒÍÅ.
ôÅÏÒÅÍÁ 73. íÎÏÖÅÓÔ×Ï T ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÉÓÔÉÎ ÎÅÐÅÒÅÞÉÓÌÉÍÏ.
äÏËÁÚÁÔÅÌØÓÔ×Ï. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÌÀÂÏÅ ÐÅÒÅÞÉÓÌÉÍÏÅ ÍÎÏÖÅÓÔ×Ï ÁÒÉÆÍÅ-
ÔÉÞÎÏ.
üÔÏ ÕÔ×ÅÒÖÄÅÎÉÅ ÎÁÚÙ×ÁÅÔÓÑ ÔÅÏÒÅÍÏÊ ç¾ÄÅÌÑ Ï ÎÅÐÏÌÎÏÔÅ. åÇÏ ÍÏÖÎÏ
ÐÅÒÅÆÏÒÍÕÌÉÒÏ×ÁÔØ ÔÁË: ×ÓÑËÏÅ ÉÓÞÉÓÌÅÎÉÅ, ÐÏÒÏÖÄÁÀÝÅÅ ÆÏÒÍÕÌÙ ÁÒÉÆ-
ÍÅÔÉËÉ (Ô. Å. ÁÌÇÏÒÉÔÍ, ÐÅÒÅÞÉÓÌÑÀÝÉÊ ÎÅËÏÔÏÒÏÅ ÍÎÏÖÅÓÔ×Ï ÔÁËÉÈ ÆÏÒ-
ÍÕÌ) ÌÉÂÏ ÎÅÁÄÅË×ÁÔÎÏ ÏÒÏÖÄÁÅÔ ÎÅËÏÔÏÒÕÀ ÌÏÖÎÕÀ ÆÏÒÍÕÌÕ), ÌÉÂÏ ÎÅ-
ÐÏÌÎÏ (ÎÅ ÐÏÒÏÖÄÁÅÔ ÎÅËÏÔÏÒÏÊ ÉÓÔÉÎÎÏÊ ÆÏÒÍÕÌÙ).
ôÅÐÅÒØ ÉÚÌÏÖÉÍ ÐÒÑÍÏÅ ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÔÅÏÒÅÍÙ ç¾ÄÅÌÑ. ëÁË ÍÙ ÕÖÅ
ÇÏ×ÏÒÉÌÉ, ÉÓÞÉÓÌÅÎÉÅ ¡ ÜÔÏ ÍÅÈÁÎÉÚÍ (ÁÌÇÏÒÉÔÍ), ËÏÔÏÒÙÊ ÐÏÚ×ÏÌÑÅÔ ÐÏ-
ÒÏÖÄÁÔØ ÎÅËÏÔÏÒÙÅ ÆÏÒÍÕÌÙ ÑÚÙËÁ ÁÒÉÆÍÅÔÉËÉ (ÄÌÑ ÐÒÏÓÔÏÔÙ ÂÕÄÅÍ ÓÞÉ-
ÔÁÔØ, ÞÔÏ ÐÏÒÏÖÄÁÀÔÓÑ ÔÏÌØËÏ ÆÏÒÍÕÌÙ ÂÅÚ ÐÁÒÁÍÅÔÒÏ×). ôÁËÉÍ ÏÂÒÁÚÏÍ,
×ÏÚÎÉËÁÅÔ ÎÅËÏÔÏÒÏÅ ÐÅÒÅÞÉÓÌÉÍÏÅ ÍÎÏÖÅÓÔ×Ï, ËÏÔÏÒÏÅ ÏÂÙÞÎÏ ÚÁÄÁÀÔ ËÁË
ÐÒÏÅËÃÉÀ ÒÁÚÒÅÛÉÍÏÇÏ ÍÎÏÖÅÓÔ×Á. éÍÅÎÎÏ, ××ÏÄÑÔ ÎÅËÏÔÏÒÏÅ ÐÏÎÑÔÉÅ ÄÏ-
ËÁÚÁÔÅÌØÓÔ×Á. ðÒÉ ÜÔÏÍ ÄÏËÁÚÁÔÅÌØÓÔ×Á Ñ×ÌÑÀÔÓÑ ÓÌÏ×ÁÍÉ × ÎÅËÏÔÏÒÏÍ
ÁÌÆÁ×ÉÔÅ. íÎÏÖÅÓÔ×Ï ÄÏËÁÚÁÔÅÌØÓÔ× ÒÁÚÒÅÛÉÍÏ, ÔÏ ÅÓÔØ ÅÓÔØ ÁÌÇÏÒÉÔÍ,
ÏÔÌÉÞÁÀÝÉÊ ÎÁÓÔÏÑÝÉÅ ÄÏËÁÚÁÔÅÌØÓÔ×Á ÏÔ ÔÅËÓÔÏ×, ËÏÔÏÒÙÊ ÔÁËÏ×ÙÍÉ ÎÅ
Ñ×ÌÑÀÔÓÑ. ëÒÏÍÅ ÔÏÇÏ, ÅÓÔØ (ÔÁËÖÅ ÒÁÚÒÅÛÉÍÏÅ) Ó×ÏÊÓÔ×Ï Ä×ÕÈ ÓÌÏ× x É y,
ËÏÔÏÒÏÅ ÇÌÁÓÉÔ, ÞÔÏ x ÅÓÔØ ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÆÏÒÍÕÌÙ y. ðÅÒÅÎÕÍÅÒÏ×Á× ×ÓÅ
ÄÏËÁÚÁÔÅÌØÓÔ×Á É ÆÏÒÍÕÌÙ É ×ÙÒÁÚÉ× ÕËÁÚÁÎÎÙÅ ÒÁÚÒÅÛÉÍÙÅ Ó×ÏÊÓÔ×Á ×
ÑÚÙËÅ ÁÒÉÆÍÅÔÉËÉ, ÍÙ ÐÒÉÈÏÄÉÍ Ë ÆÏÒÍÕÌÅ Proof(x, y), ËÏÔÏÒÁÑ ÉÓÔÉÎÎÁ,
ËÏÇÄÁ x ÅÓÔØ ÎÏÍÅÒ ÄÏËÁÚÁÔÅÌØÓÔ×Á ÆÏÒÍÕÌÙ Ó ÎÏÍÅÒÏÍ y.
ôÅÐÅÒØ ÎÁÐÉÛÅÍ ÆÏÒÍÕÌÕ Ó ÏÄÎÉÍ ÐÁÒÁÍÅÔÒÏÍ x, ËÏÔÏÒÁÑ ÇÏ×ÏÒÉÔ, ÞÔÏ
ÒÅÚÕÌØÔÁÔ ÐÏÄÓÔÁÎÏ×ËÉ ÞÉÓÌÁ x ×ÍÅÓÔÏ ÐÁÒÁÍÅÔÒÁ × x-ÕÀ ÆÏÒÍÕÌÕ Ó ÏÄÎÉÍ
188                  çÌÁ×Á XII. áÒÉÆÍÅÔÉÞÎÏÓÔØ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ

ÓÔÁÎÅÔ ÓÏ×ÓÅÍ ¥ÏÓÑÚÁÅÍÙÍ¥.


  üÔÁ ÔÅÏÒÅÍÁ ÎÁÚÙ×ÁÅÔÓÑ ÔÅÏÒÅÍÏÊ ôÁÒÓËÏÇÏ. å¾ ÍÏÖÎÏ ÐÒÏÞÅÓÔØ ÔÁË:
ÍÎÏÖÅÓÔ×Ï ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÉÓÔÉÎ ÎÅ ÁÒÉÆÍÅÔÉÞÎÏ. éÌÉ: ÐÏÎÑÔÉÅ ÁÒÉÆÍÅ-
ÔÉÞÅÓËÏÊ ÉÓÔÉÎÙ ÎÅ×ÙÒÁÚÉÍÏ × ÁÒÉÆÍÅÔÉËÅ.
  úÁÄÁÞÁ 205. ðÏËÁÖÉÔÅ, ÞÔÏ ÄÌÑ ÌÀÂÏÇÏ N ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÉÓÔÉÎÎÙÈ
ÚÁÍËÎÕÔÙÈ ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÆÏÒÍÕÌ, ÓÏÄÅÒÖÁÝÉÈ ÎÅ ÂÏÌÅÅ N Ë×ÁÎÔÏÒÏ×,
ÁÒÉÆÍÅÔÉÞÎÏ.
  úÁÄÁÞÁ 206. óÆÏÒÍÕÌÉÒÕÊÔÅ É ÄÏËÁÖÉÔÅ ÁÎÁÌÏÇÉÞÎÏÅ ÕÔ×ÅÒÖÄÅÎÉÑ
ÄÌÑ ÆÏÒÍÕÌ ÏÇÒÁÎÉÞÅÎÎÏÊ Ë×ÁÎÔÏÒÎÏÊ ÇÌÕÂÉÎÙ (ÞÉÓÌÏ ×ÌÏÖÅÎÎÙÈ Ë×ÁÎÔÏ-
ÒÏ×) É ÄÌÑ ÆÏÒÍÕÌ Ó ÏÇÒÁÎÉÞÅÎÎÙÍ ÞÉÓÌÏÍ ÐÅÒÅÍÅÎ Ë×ÁÎÔÏÒÏ× × ÐÒÅÄ×ÁÒ¾Î-
ÎÏÊ ÎÏÒÍÁÌØÎÏÊ ÆÏÒÍÅ.
  ôÅÏÒÅÍÁ 73. íÎÏÖÅÓÔ×Ï T ÁÒÉÆÍÅÔÉÞÅÓËÉÈ ÉÓÔÉÎ ÎÅÐÅÒÅÞÉÓÌÉÍÏ.
  äÏËÁÚÁÔÅÌØÓÔ×Ï. ÷ ÓÁÍÏÍ ÄÅÌÅ, ÌÀÂÏÅ ÐÅÒÅÞÉÓÌÉÍÏÅ ÍÎÏÖÅÓÔ×Ï ÁÒÉÆÍÅ-
ÔÉÞÎÏ.
   üÔÏ ÕÔ×ÅÒÖÄÅÎÉÅ ÎÁÚÙ×ÁÅÔÓÑ ÔÅÏÒÅÍÏÊ ç¾ÄÅÌÑ Ï ÎÅÐÏÌÎÏÔÅ. åÇÏ ÍÏÖÎÏ
ÐÅÒÅÆÏÒÍÕÌÉÒÏ×ÁÔØ ÔÁË: ×ÓÑËÏÅ ÉÓÞÉÓÌÅÎÉÅ, ÐÏÒÏÖÄÁÀÝÅÅ ÆÏÒÍÕÌÙ ÁÒÉÆ-
ÍÅÔÉËÉ (Ô. Å. ÁÌÇÏÒÉÔÍ, ÐÅÒÅÞÉÓÌÑÀÝÉÊ ÎÅËÏÔÏÒÏÅ ÍÎÏÖÅÓÔ×Ï ÔÁËÉÈ ÆÏÒ-
ÍÕÌ) ÌÉÂÏ ÎÅÁÄÅË×ÁÔÎÏ (ÐÏÒÏÖÄÁÅÔ ÎÅËÏÔÏÒÕÀ ÌÏÖÎÕÀ ÆÏÒÍÕÌÕ), ÌÉÂÏ ÎÅ-
ÐÏÌÎÏ (ÎÅ ÐÏÒÏÖÄÁÅÔ ÎÅËÏÔÏÒÏÊ ÉÓÔÉÎÎÏÊ ÆÏÒÍÕÌÙ).
   ôÅÐÅÒØ ÉÚÌÏÖÉÍ ÐÒÑÍÏÅ ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÔÅÏÒÅÍÙ ç¾ÄÅÌÑ. ëÁË ÍÙ ÕÖÅ
ÇÏ×ÏÒÉÌÉ, ÉÓÞÉÓÌÅÎÉÅ ¡ ÜÔÏ ÍÅÈÁÎÉÚÍ (ÁÌÇÏÒÉÔÍ), ËÏÔÏÒÙÊ ÐÏÚ×ÏÌÑÅÔ ÐÏ-
ÒÏÖÄÁÔØ ÎÅËÏÔÏÒÙÅ ÆÏÒÍÕÌÙ ÑÚÙËÁ ÁÒÉÆÍÅÔÉËÉ (ÄÌÑ ÐÒÏÓÔÏÔÙ ÂÕÄÅÍ ÓÞÉ-
ÔÁÔØ, ÞÔÏ ÐÏÒÏÖÄÁÀÔÓÑ ÔÏÌØËÏ ÆÏÒÍÕÌÙ ÂÅÚ ÐÁÒÁÍÅÔÒÏ×). ôÁËÉÍ ÏÂÒÁÚÏÍ,
×ÏÚÎÉËÁÅÔ ÎÅËÏÔÏÒÏÅ ÐÅÒÅÞÉÓÌÉÍÏÅ ÍÎÏÖÅÓÔ×Ï, ËÏÔÏÒÏÅ ÏÂÙÞÎÏ ÚÁÄÁÀÔ ËÁË
ÐÒÏÅËÃÉÀ ÒÁÚÒÅÛÉÍÏÇÏ ÍÎÏÖÅÓÔ×Á. éÍÅÎÎÏ, ××ÏÄÑÔ ÎÅËÏÔÏÒÏÅ ÐÏÎÑÔÉÅ ÄÏ-
ËÁÚÁÔÅÌØÓÔ×Á. ðÒÉ ÜÔÏÍ ÄÏËÁÚÁÔÅÌØÓÔ×Á Ñ×ÌÑÀÔÓÑ ÓÌÏ×ÁÍÉ × ÎÅËÏÔÏÒÏÍ
ÁÌÆÁ×ÉÔÅ. íÎÏÖÅÓÔ×Ï ÄÏËÁÚÁÔÅÌØÓÔ× ÒÁÚÒÅÛÉÍÏ, ÔÏ ÅÓÔØ ÅÓÔØ ÁÌÇÏÒÉÔÍ,
ÏÔÌÉÞÁÀÝÉÊ ÎÁÓÔÏÑÝÉÅ ÄÏËÁÚÁÔÅÌØÓÔ×Á ÏÔ ÔÅËÓÔÏ×, ËÏÔÏÒÙÊ ÔÁËÏ×ÙÍÉ ÎÅ
Ñ×ÌÑÀÔÓÑ. ëÒÏÍÅ ÔÏÇÏ, ÅÓÔØ (ÔÁËÖÅ ÒÁÚÒÅÛÉÍÏÅ) Ó×ÏÊÓÔ×Ï Ä×ÕÈ ÓÌÏ× x É y,
ËÏÔÏÒÏÅ ÇÌÁÓÉÔ, ÞÔÏ x ÅÓÔØ ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÆÏÒÍÕÌÙ y. ðÅÒÅÎÕÍÅÒÏ×Á× ×ÓÅ
ÄÏËÁÚÁÔÅÌØÓÔ×Á É ÆÏÒÍÕÌÙ É ×ÙÒÁÚÉ× ÕËÁÚÁÎÎÙÅ ÒÁÚÒÅÛÉÍÙÅ Ó×ÏÊÓÔ×Á ×
ÑÚÙËÅ ÁÒÉÆÍÅÔÉËÉ, ÍÙ ÐÒÉÈÏÄÉÍ Ë ÆÏÒÍÕÌÅ Proof(x, y), ËÏÔÏÒÁÑ ÉÓÔÉÎÎÁ,
ËÏÇÄÁ x ÅÓÔØ ÎÏÍÅÒ ÄÏËÁÚÁÔÅÌØÓÔ×Á ÆÏÒÍÕÌÙ Ó ÎÏÍÅÒÏÍ y.
   ôÅÐÅÒØ ÎÁÐÉÛÅÍ ÆÏÒÍÕÌÕ Ó ÏÄÎÉÍ ÐÁÒÁÍÅÔÒÏÍ x, ËÏÔÏÒÁÑ ÇÏ×ÏÒÉÔ, ÞÔÏ
ÒÅÚÕÌØÔÁÔ ÐÏÄÓÔÁÎÏ×ËÉ ÞÉÓÌÁ x ×ÍÅÓÔÏ ÐÁÒÁÍÅÔÒÁ × x-ÕÀ ÆÏÒÍÕÌÕ Ó ÏÄÎÉÍ