Математическая логика и теория алгоритмов. Самохин А.В. - 195 стр.

UptoLike

Составители: 

Рубрика: 

§2. ðÒÉÍÅÒÙ ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÙÈ ÆÕÎËÃÉÊ 195
æÕÎËÃÉÉ ÐÒÏÅËÃÉÉ ÐÏÚ×ÏÌÑÀÔ ×ÙÐÏÌÎÑÔØ ¥ÎÅÏÄÎÏÒÏÄÎÙÅ¥ ÐÏÄÓÔÁÎÏ×ËÉ:
ÓËÁÖÅÍ, ÍÏÖÎÏ ÐÏÌÕÞÉÔØ ÆÕÎËÃÉÀ hx, yi 7→ f(g(x), h(y, x, y), x) ÉÚ ÆÕÎË-
ÃÉÊ f É h, ËÏÍÂÉÎÉÒÕÑ ÉÈ Ó ÆÕÎËÃÉÑÍÉ ÐÒÏÅËÃÉÉ: ÓÎÁÞÁÌÁ ÐÏÌÕÞÁÅÍ ÆÕÎË-
ÃÉÀ hx, yi 7→ g(x) ÏÄÓÔÁÎÏ×ËÁ π
1
2
× g), ÚÁÔÅÍ hx, yi 7→ h(y, x, y) ÏÄÓÔÁÎÏ×ËÁ
π
2
2
, π
1
2
, π
2
2
× h), ÚÁÔÅÍ ÐÏÌÕÞÅÎÎÙÅ Ä×Å ÆÕÎËÃÉÉ ×ÍÅÓÔÅ Ó ÆÕÎËÃÉÅÊ π
1
2
ÐÏÄÓÔÁ-
×ÌÑÅÍ × f.
ðÏÄÓÔÁ×ÌÑÑ ËÏÎÓÔÁÎÔÕ 0 × ÆÕÎËÃÉÀ ÐÒÉÂÁ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ, ÐÏÌÕÞÁÅÍ
ËÏÎÓÔÁÎÔÕ (ÆÕÎËÃÉÀ ÎÕÌÑ ÁÒÇÕÍÅÎÔÏ×) 1. úÁÔÅÍ ÍÏÖÎÏ ÐÏÌÕÞÉÔØ ËÏÎÓÔÁÎ-
ÔÙ 2, 3 É Ô. Ä.
§2. ðÒÉÍÅÒÙ ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÙÈ ÆÕÎËÃÉÊ
ëÁË É Ó ÄÒÕÇÉÍÉ ×ÙÞÉÓÌÉÔÅÌØÎÙÍÉ ÍÏÄÅÌÑÍÉ, ×ÁÖÎÏ ÎÁËÏÐÉÔØ ÎÅËÏÔÏ-
ÒÙÊ ÐÒÏÇÒÁÍÍÉÓÔÓËÉÊ ÏÐÙÔ.
óÌÏÖÅÎÉÅ. æÕÎËÃÉÑ hx, yi 7→ sum(x, y) = x + y ÐÏÌÕÞÁÅÔÓÑ Ó ÐÏÍÏÝØÀ
ÒÅËÕÒÓÉÉ:
sum(x, 0) = x; (1)
sum(x, y + 1) = sum(x, y) + 1. (2)
îÁÄÏ, ËÏÎÅÞÎÏ, ÐÒÅÄÓÔÁ×ÉÔØ ÐÒÁ×ÕÀ ÞÁÓÔØ ×ÔÏÒÏÇÏ ÒÁ×ÅÎÓÔ×Á ËÁË ÒÅÚÕÌØ-
ÔÁÔ ÐÏÄÓÔÁÎÏ×ËÉ. æÏÒÍÁÌØÎÏ ÇÏ×ÏÒÑ, h(x, y, z) × ÏÐÒÅÄÅÌÅÎÉÉ ÒÅËÕÒÓÉÉ ÎÁÄÏ
ÐÏÌÏÖÉÔØ ÒÁ×ÎÙÍ s(z), ÇÄÅ s ¡ ÆÕÎËÃÉÑ ÐÒÉÂÁ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ.
õÍÎÏÖÅÎÉÅ. æÕÎËÃÉÑ hx, yi 7→ prod(x, y) = xy ÐÏÌÕÞÁÅÔÓÑ Ó ÐÏÍÏÝØÀ
ÒÅËÕÒÓÉÉ ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÓÌÏÖÅÎÉÑ):
prod(x, 0) = 0; (3)
prod(x, y + 1) = prod(x, y) + x. (4)
áÎÁÌÏÇÉÞÎÙÍ ÏÂÒÁÚÏÍ ÍÏÖÎÏ ÐÅÒÅÊÔÉ ÏÔ ÕÍÎÏÖÅÎÉÑ Ë ×ÏÚ×ÅÄÅÎÉÀ × ÓÔÅ-
ÐÅÎØ.
õÓÅÞ¾ÎÎÏÅ ×ÙÞÉÔÁÎÉÅ. íÙ ÇÏ×ÏÒÉÍ Ï ¥ÕÓÅÞ¾ÎÎÏÍ ×ÙÞÉÔÁÎÉÉ¥ x
y =
= x y ÐÒÉ x > y É x
y = 0 ÐÒÉ x < y, ÐÏÓËÏÌØËÕ ÍÙ ÉÍÅÅÍ ÄÅÌÏ ÔÏÌØËÏ Ó
ÎÁÔÕÒÁÌØÎÙÍÉ (ÃÅÌÙÍÉ ÎÅÏÔÒÉÃÁÔÅÌØÎÙÍÉ) ÞÉÓÌÁÍÉ. ïÄÎÏÍÅÓÔÎÁÑ ÆÕÎË-
ÃÉÑ ÕÓÅÞ¾ÎÎÏÇÏ ×ÙÞÉÔÁÎÉÑ ÅÄÉÎÉÃÙ ÏÐÒÅÄÅÌÑÅÔÓÑ ÒÅËÕÒÓÉ×ÎÏ:
0
1 = 0; (5)
(y + 1)
1 = y. (6)
(òÅËÕÒÓÉÑ ÚÄÅÓØ ÆÏÒÍÁÌØÎÁ, ÔÁË ËÁË ÐÒÅÄÙÄÕÝÅÅ ÚÎÁÞÅÎÉÅ ÎÅ ÉÓÐÏÌØÚÕÅÔ-
ÓÑ.) ðÏÓÌÅ ÜÔÏÇÏ ÕÓÅÞ¾ÎÎÏÅ ×ÙÞÉÔÁÎÉÅ ÄÌÑ ÐÒÏÉÚ×ÏÌØÎÙÈ ÁÒÇÕÍÅÎÔÏ× ÍÏÖÎÏ
§2. ðÒÉÍÅÒÙ ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÙÈ ÆÕÎËÃÉÊ                                   195

     æÕÎËÃÉÉ ÐÒÏÅËÃÉÉ ÐÏÚ×ÏÌÑÀÔ ×ÙÐÏÌÎÑÔØ ¥ÎÅÏÄÎÏÒÏÄÎÙÅ¥ ÐÏÄÓÔÁÎÏ×ËÉ:
ÓËÁÖÅÍ, ÍÏÖÎÏ ÐÏÌÕÞÉÔØ ÆÕÎËÃÉÀ hx, yi 7→ f (g(x), h(y, x, y), x) ÉÚ ÆÕÎË-
ÃÉÊ f É h, ËÏÍÂÉÎÉÒÕÑ ÉÈ Ó ÆÕÎËÃÉÑÍÉ ÐÒÏÅËÃÉÉ: ÓÎÁÞÁÌÁ ÐÏÌÕÞÁÅÍ ÆÕÎË-
ÃÉÀ hx, yi 7→ g(x) (ÐÏÄÓÔÁÎÏ×ËÁ π21 × g), ÚÁÔÅÍ hx, yi 7→ h(y, x, y) (ÐÏÄÓÔÁÎÏ×ËÁ
π22 , π21 , π22 × h), ÚÁÔÅÍ ÐÏÌÕÞÅÎÎÙÅ Ä×Å ÆÕÎËÃÉÉ ×ÍÅÓÔÅ Ó ÆÕÎËÃÉÅÊ π21 ÐÏÄÓÔÁ-
×ÌÑÅÍ × f .
     ðÏÄÓÔÁ×ÌÑÑ ËÏÎÓÔÁÎÔÕ 0 × ÆÕÎËÃÉÀ ÐÒÉÂÁ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ, ÐÏÌÕÞÁÅÍ
ËÏÎÓÔÁÎÔÕ (ÆÕÎËÃÉÀ ÎÕÌÑ ÁÒÇÕÍÅÎÔÏ×) 1. úÁÔÅÍ ÍÏÖÎÏ ÐÏÌÕÞÉÔØ ËÏÎÓÔÁÎ-
ÔÙ 2, 3 É Ô. Ä.


  §2. ðÒÉÍÅÒÙ ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÙÈ ÆÕÎËÃÉÊ
   ëÁË É Ó ÄÒÕÇÉÍÉ ×ÙÞÉÓÌÉÔÅÌØÎÙÍÉ ÍÏÄÅÌÑÍÉ, ×ÁÖÎÏ ÎÁËÏÐÉÔØ ÎÅËÏÔÏ-
ÒÙÊ ÐÒÏÇÒÁÍÍÉÓÔÓËÉÊ ÏÐÙÔ.
   óÌÏÖÅÎÉÅ. æÕÎËÃÉÑ hx, yi 7→ sum(x, y) = x + y ÐÏÌÕÞÁÅÔÓÑ Ó ÐÏÍÏÝØÀ
ÒÅËÕÒÓÉÉ:
                           sum(x, 0) = x;                                    (1)
                        sum(x, y + 1) = sum(x, y) + 1.                       (2)
îÁÄÏ, ËÏÎÅÞÎÏ, ÐÒÅÄÓÔÁ×ÉÔØ ÐÒÁ×ÕÀ ÞÁÓÔØ ×ÔÏÒÏÇÏ ÒÁ×ÅÎÓÔ×Á ËÁË ÒÅÚÕÌØ-
ÔÁÔ ÐÏÄÓÔÁÎÏ×ËÉ. æÏÒÍÁÌØÎÏ ÇÏ×ÏÒÑ, h(x, y, z) × ÏÐÒÅÄÅÌÅÎÉÉ ÒÅËÕÒÓÉÉ ÎÁÄÏ
ÐÏÌÏÖÉÔØ ÒÁ×ÎÙÍ s(z), ÇÄÅ s ¡ ÆÕÎËÃÉÑ ÐÒÉÂÁ×ÌÅÎÉÑ ÅÄÉÎÉÃÙ.
   õÍÎÏÖÅÎÉÅ. æÕÎËÃÉÑ hx, yi 7→ prod(x, y) = xy ÐÏÌÕÞÁÅÔÓÑ Ó ÐÏÍÏÝØÀ
ÒÅËÕÒÓÉÉ (Ó ÉÓÐÏÌØÚÏ×ÁÎÉÅÍ ÓÌÏÖÅÎÉÑ):
                            prod(x, 0) = 0;                                  (3)
                        prod(x, y + 1) = prod(x, y) + x.                     (4)
   áÎÁÌÏÇÉÞÎÙÍ ÏÂÒÁÚÏÍ ÍÏÖÎÏ ÐÅÒÅÊÔÉ ÏÔ ÕÍÎÏÖÅÎÉÑ Ë ×ÏÚ×ÅÄÅÎÉÀ × ÓÔÅ-
ÐÅÎØ.
   õÓÅÞ¾ÎÎÏÅ ×ÙÞÉÔÁÎÉÅ. íÙ ÇÏ×ÏÒÉÍ Ï ¥ÕÓÅÞ¾ÎÎÏÍ ×ÙÞÉÔÁÎÉÉ¥ x −    ‘ y =
= x − y ÐÒÉ x > y É x −
                      ‘ y = 0 ÐÒÉ x < y, ÐÏÓËÏÌØËÕ ÍÙ ÉÍÅÅÍ ÄÅÌÏ ÔÏÌØËÏ Ó
ÎÁÔÕÒÁÌØÎÙÍÉ (ÃÅÌÙÍÉ ÎÅÏÔÒÉÃÁÔÅÌØÎÙÍÉ) ÞÉÓÌÁÍÉ. ïÄÎÏÍÅÓÔÎÁÑ ÆÕÎË-
ÃÉÑ ÕÓÅÞ¾ÎÎÏÇÏ ×ÙÞÉÔÁÎÉÑ ÅÄÉÎÉÃÙ ÏÐÒÅÄÅÌÑÅÔÓÑ ÒÅËÕÒÓÉ×ÎÏ:
                                      0−‘ 1 = 0;                             (5)
                                (y + 1) −
                                        ‘ 1 = y.                             (6)
(òÅËÕÒÓÉÑ ÚÄÅÓØ ÆÏÒÍÁÌØÎÁ, ÔÁË ËÁË ÐÒÅÄÙÄÕÝÅÅ ÚÎÁÞÅÎÉÅ ÎÅ ÉÓÐÏÌØÚÕÅÔ-
ÓÑ.) ðÏÓÌÅ ÜÔÏÇÏ ÕÓÅÞ¾ÎÎÏÅ ×ÙÞÉÔÁÎÉÅ ÄÌÑ ÐÒÏÉÚ×ÏÌØÎÙÈ ÁÒÇÕÍÅÎÔÏ× ÍÏÖÎÏ