Математическая логика и теория алгоритмов. Самохин А.В. - 202 стр.

UptoLike

Составители: 

Рубрика: 

202 çÌÁ×Á XIII. òÅËÕÒÓÉ×ÎÙÅ ÆÕÎËÃÉÉ
ÒÁÚÏÂÒÁÎÎÙÈ ×ÙÛÅ ÐÒɾÍÏ×, É ÐÏÄÒÏÂÎÏ ÏÓÔÁÎÁ×ÌÉ×ÁÔØÓÑ ÎÁ ÜÔÏÍ ÍÙ ÎÅ ÂÕ-
ÄÅÍ.
üÔÁ ÔÅÏÒÅÍÁ ÕÂÅÖÄÁÅÔ ÎÁÓ × ÐÒÉÍÉÔÉ×ÎÏÊ ÒÅËÕÒÓÉ×ÎÏÓÔÉ ÍÎÏÇÉÈ ÄÏ×ÏÌØ-
ÎÏ ÓÌÏÖÎÏ ÏÐÒÅÄÅÌÑÅÍÙÈ ÆÕÎËÃÉÊ. îÁÐÒÉÍÅÒ, ÒÁÓÓÍÏÔÒÉÍ ÆÕÎËÃÉÀ n 7→
7→ (n-ÙÊ ÄÅÓÑÔÉÞÎÙÊ ÚÎÁË ÞÉÓÌÁ π). éÚ×ÅÓÔÎÏ, ÞÔÏ ×ÙÞÉÓÌÅÎÙ ÍÉÌÌÉÏÎÙ
ÔÁËÉÈ ÚÎÁËÏ×, ÐÏÜÔÏÍÕ ÅÓÔØ ×ÓÅ ÏÓÎÏ×ÁÎÉÑ ÐÏÌÁÇÁÔØ, ÞÔÏ ÉÚ×ÅÓÔÎÙÅ ÁÌÇÏÒÉÔ-
ÍÙ ÒÁÂÏÔÁÀÔ ÎÅ ÓÌÉÛËÏÍ ÄÏÌÇÏ ¡ ÂÙÌÏ ÂÙ ÏÞÅÎØ ÓÔÒÁÎÎÏ, ÅÓÌÉ ÂÙ ×ÒÅÍÑ ÉÈ
ÒÁÂÏÔÙ (ÄÁÖÅ ÕÞÉÔÙ×ÁÑ ÎÅÕÄÏÂÓÔ×Ï ÍÁÛÉÎÙ ôØÀÒÉÎÇÁ ÄÌÑ ÐÒÏÇÒÁÍÍÉÒÏ×Á-
ÎÉÑ) ÎÅ ÏÃÅÎÉ×ÁÌÏÓØ ÂÙ, ÓËÁÖÅÍ, ÆÕÎËÃÉÅÊ c×2
n
ÐÒÉ ÄÏÓÔÁÔÏÞÎÏ ÂÏÌØÛÏÍ c.
á ÔÁËÁÑ ÏÃÅÎËÁ ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÁ, ÞÔÏ ÐÏÚ×ÏÌÑÅÔ ÓÏÓÌÁÔØÓÑ ÎÁ ÔÏÌØËÏ
ÞÔÏ ÄÏËÁÚÁÎÎÕÀ ÔÅÏÒÅÍÕ. (îÁ ÓÁÍÏÍ ÄÅÌÅ ÔÕÔ ÂÏÌØÛÏÊ ÚÁÐÁÓ ¡ ÓÕÝÅÓÔ×ÕÀÔ
ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÙÅ ÆÕÎËÃÉÉ, ËÏÔÏÒÙÅ ÒÁÓÔÕÔ ÇÏÒÁÚÄÏ ÂÙÓÔÒÅÅ 2
n
.)
§6. þÁÓÔÉÞÎÏ ÒÅËÕÒÓÉ×ÎÙÅ ÆÕÎËÃÉÉ
ïÐÅÒÁÔÏÒÙ ÐÒÉÍÉÔÉ×ÎÏÊ ÒÅËÕÒÓÉÉ É ÐÏÄÓÔÁÎÏ×ËÉ ÎÅ ×Ù×ÏÄÑÔ ÎÁÓ ÉÚ ËÌÁÓ-
ÓÁ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÙÈ ÆÕÎËÃÉÊ. îÅ ÔÁË ÏÂÓÔÏÉÔ ÄÅÌÏ Ó ÏÐÅÒÁÔÏÒÏÍ ÍÉÎÉ-
ÍÉÚÁÃÉÉ, Ï ËÏÔÏÒÏÍ ÍÙ ÕÖÅ ÕÐÏÍÉÎÁÌÉ. ïÎ ÐÒÉÍÅÎÑÅÔÓÑ Ë (k + 1)-ÍÅÓÔÎÏÊ
ÆÕÎËÃÉÉ f É ÄÁ¾Ô k-ÍÅÓÔÎÕÀ ÆÕÎËÃÉÀ g, ÏÐÒÅÄÅÌÑÅÍÕÀ ÔÁË: g(x
1
, . . . , x
k
)
ÅÓÔØ ÎÁÉÍÅÎØÛÅÅ y, ÄÌÑ ËÏÔÏÒÏÇÏ f(x
1
, . . . , x
k
, y) = 0.
óÍÙÓÌ ×ÙÄÅÌÅÎÎÙÈ ÓÌÏ× ÑÓÅÎ, ÅÓÌÉ ÆÕÎËÃÉÑ f ×ÓÀÄÕ ÏÐÒÅÄÅÌÅÎÁ. åÓ-
ÌÉ ÎÅÔ, ÔÏ ÐÏÎÉÍÁÔØ ÉÈ ÎÁÄÏ ÔÁË: ÚÎÁÞÅÎÉÅ g(x
1
, . . . , x
k
) ÒÁ×ÎÏ y, ÅÓÌÉ
f(x
1
, . . . , x
k
, y) ÏÐÒÅÄÅÌÅÎÏ É ÒÁ×ÎÏ ÎÕÌÀ, Á ×ÓÅ ÚÎÁÞÅÎÉÑ f(x
1
, . . . , y
k
, y
0
)
ÐÒÉ y
0
< y ÏÐÒÅÄÅÌÅÎÙ É ÎÅ ÒÁ×ÎÙ ÎÕÌÀ.
þÁÓÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÏÂÏÚÎÁÞÅÎÉÅ
g(x
1
, . . . , x
k
) = µy (f(x
1
, . . . , x
k
, y) = 0),
É ÐÏÔÏÍÕ ÏÐÅÒÁÔÏÒ ÍÉÎÉÍÉÚÁÃÉÉ ÔÁËÖÅ ÎÁÚÙ×ÁÀÔ µ-ÏÐÅÒÁÔÏÒÏÍ.
ñÓÎÏ, ÞÔÏ ÔÁËÏÅ ÏÐÒÅÄÅÌÅÎÉÅ ÏÂÅÓÐÅÞÉ×ÁÅÔ ×ÙÞÉÓÌÉÍÏÓÔØ g, ÅÓÌÉ ×ÙÞÉ-
ÓÌÉÍÁ f (ÍÙ ÐÅÒÅÂÉÒÁÅÍ × ÐÏÒÑÄËÅ ×ÏÚÒÁÓÔÁÎÉÑ ×ÓÅ y, ÏÖÉÄÁÑ ÐÏÑ×ÌÅÎÉÑ
ÎÕÌÅ×ÏÇÏ ÚÎÁÞÅÎÉÑ).
úÁÄÁÞÁ 207. ðÏËÁÖÉÔÅ, ÞÔÏ ÅÓÌÉ ÉÚÍÅÎÉÔØ ÏÐÒÅÄÅÌÅÎÉÅ É ÒÁÚÒÅÛÉÔØ
f(x
1
, . . . , x
k
, y
0
) ÂÙÔØ ÎÅ ÏÐÒÅÄÅ̾ÎÎÙÍ ÐÒÉ y
0
< y, ÔÏ ÆÕÎËÃÉÑ g ÍÏÖÅÔ
ÂÙÔØ ÎÅ×ÙÞÉÓÌÉÍÏÊ ÐÒÉ ×ÙÞÉÓÌÉÍÏÊ f.
æÕÎËÃÉÉ, ÐÏÌÕÞÁÀÝÉÅÓÑ ÉÚ ÂÁÚÉÓÎÙÈ (ÎÕÌÑ, ÐÒÏÅËÃÉÉ É ÐÒÉÂÁ×ÌÅÎÉÑ
ÅÄÉÎÉÃÙ) Ó ÐÏÍÏÝØÀ ÏÐÅÒÁÔÏÒÏ× ÐÏÄÓÔÁÎÏ×ËÉ, ÐÒÉÍÉÔÉ×ÎÏÊ ÒÅËÕÒÓÉÉ É ÍÉ-
ÎÉÍÉÚÁÃÉÉ, ÎÁÚÙ×ÁÀÔÓÑ ÞÁÓÔÉÞÎÏ ÒÅËÕÒÓÉ×ÎÙÍÉ. åÓÌÉ ÔÁËÁÑ ÆÕÎËÃÉÑ ÏËÁ-
ÚÙ×ÁÅÔÓÑ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÏÊ, ÔÏ Å¾ ÎÁÚÙ×ÁÀÔ ÏÂÝÅÒÅËÕÒÓÉ×ÎÏÊ ÆÕÎËÃÉÅÊ.
202                                              çÌÁ×Á XIII. òÅËÕÒÓÉ×ÎÙÅ ÆÕÎËÃÉÉ

ÒÁÚÏÂÒÁÎÎÙÈ ×ÙÛÅ ÐÒɾÍÏ×, É ÐÏÄÒÏÂÎÏ ÏÓÔÁÎÁ×ÌÉ×ÁÔØÓÑ ÎÁ ÜÔÏÍ ÍÙ ÎÅ ÂÕ-
ÄÅÍ.
   üÔÁ ÔÅÏÒÅÍÁ ÕÂÅÖÄÁÅÔ ÎÁÓ × ÐÒÉÍÉÔÉ×ÎÏÊ ÒÅËÕÒÓÉ×ÎÏÓÔÉ ÍÎÏÇÉÈ ÄÏ×ÏÌØ-
ÎÏ ÓÌÏÖÎÏ ÏÐÒÅÄÅÌÑÅÍÙÈ ÆÕÎËÃÉÊ. îÁÐÒÉÍÅÒ, ÒÁÓÓÍÏÔÒÉÍ ÆÕÎËÃÉÀ n 7→
7→ (n-ÙÊ ÄÅÓÑÔÉÞÎÙÊ ÚÎÁË ÞÉÓÌÁ π). éÚ×ÅÓÔÎÏ, ÞÔÏ ×ÙÞÉÓÌÅÎÙ ÍÉÌÌÉÏÎÙ
ÔÁËÉÈ ÚÎÁËÏ×, ÐÏÜÔÏÍÕ ÅÓÔØ ×ÓÅ ÏÓÎÏ×ÁÎÉÑ ÐÏÌÁÇÁÔØ, ÞÔÏ ÉÚ×ÅÓÔÎÙÅ ÁÌÇÏÒÉÔ-
ÍÙ ÒÁÂÏÔÁÀÔ ÎÅ ÓÌÉÛËÏÍ ÄÏÌÇÏ ¡ ÂÙÌÏ ÂÙ ÏÞÅÎØ ÓÔÒÁÎÎÏ, ÅÓÌÉ ÂÙ ×ÒÅÍÑ ÉÈ
ÒÁÂÏÔÙ (ÄÁÖÅ ÕÞÉÔÙ×ÁÑ ÎÅÕÄÏÂÓÔ×Ï ÍÁÛÉÎÙ ôØÀÒÉÎÇÁ ÄÌÑ ÐÒÏÇÒÁÍÍÉÒÏ×Á-
ÎÉÑ) ÎÅ ÏÃÅÎÉ×ÁÌÏÓØ ÂÙ, ÓËÁÖÅÍ, ÆÕÎËÃÉÅÊ c×2n ÐÒÉ ÄÏÓÔÁÔÏÞÎÏ ÂÏÌØÛÏÍ c.
á ÔÁËÁÑ ÏÃÅÎËÁ ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÁ, ÞÔÏ ÐÏÚ×ÏÌÑÅÔ ÓÏÓÌÁÔØÓÑ ÎÁ ÔÏÌØËÏ
 ÞÔÏ ÄÏËÁÚÁÎÎÕÀ ÔÅÏÒÅÍÕ. (îÁ ÓÁÍÏÍ ÄÅÌÅ ÔÕÔ ÂÏÌØÛÏÊ ÚÁÐÁÓ ¡ ÓÕÝÅÓÔ×ÕÀÔ
 ÐÒÉÍÉÔÉ×ÎÏ ÒÅËÕÒÓÉ×ÎÙÅ ÆÕÎËÃÉÉ, ËÏÔÏÒÙÅ ÒÁÓÔÕÔ ÇÏÒÁÚÄÏ ÂÙÓÔÒÅÅ 2 n .)


   §6. þÁÓÔÉÞÎÏ ÒÅËÕÒÓÉ×ÎÙÅ ÆÕÎËÃÉÉ
   ïÐÅÒÁÔÏÒÙ ÐÒÉÍÉÔÉ×ÎÏÊ ÒÅËÕÒÓÉÉ É ÐÏÄÓÔÁÎÏ×ËÉ ÎÅ ×Ù×ÏÄÑÔ ÎÁÓ ÉÚ ËÌÁÓ-
ÓÁ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÙÈ ÆÕÎËÃÉÊ. îÅ ÔÁË ÏÂÓÔÏÉÔ ÄÅÌÏ Ó ÏÐÅÒÁÔÏÒÏÍ ÍÉÎÉ-
ÍÉÚÁÃÉÉ, Ï ËÏÔÏÒÏÍ ÍÙ ÕÖÅ ÕÐÏÍÉÎÁÌÉ. ïÎ ÐÒÉÍÅÎÑÅÔÓÑ Ë (k + 1)-ÍÅÓÔÎÏÊ
ÆÕÎËÃÉÉ f É ÄÁ¾Ô k-ÍÅÓÔÎÕÀ ÆÕÎËÃÉÀ g, ÏÐÒÅÄÅÌÑÅÍÕÀ ÔÁË: g(x1, . . . , xk )
ÅÓÔØ ÎÁÉÍÅÎØÛÅÅ y, ÄÌÑ ËÏÔÏÒÏÇÏ f (x1, . . . , xk , y) = 0.
   óÍÙÓÌ ×ÙÄÅÌÅÎÎÙÈ ÓÌÏ× ÑÓÅÎ, ÅÓÌÉ ÆÕÎËÃÉÑ f ×ÓÀÄÕ ÏÐÒÅÄÅÌÅÎÁ. åÓ-
ÌÉ ÎÅÔ, ÔÏ ÐÏÎÉÍÁÔØ ÉÈ ÎÁÄÏ ÔÁË: ÚÎÁÞÅÎÉÅ g(x1 , . . . , xk ) ÒÁ×ÎÏ y, ÅÓÌÉ
f (x1, . . . , xk , y) ÏÐÒÅÄÅÌÅÎÏ É ÒÁ×ÎÏ ÎÕÌÀ, Á ×ÓÅ ÚÎÁÞÅÎÉÑ f (x1, . . . , yk , y 0)
ÐÒÉ y 0 < y ÏÐÒÅÄÅÌÅÎÙ É ÎÅ ÒÁ×ÎÙ ÎÕÌÀ.
   þÁÓÔÏ ÉÓÐÏÌØÚÕÅÔÓÑ ÏÂÏÚÎÁÞÅÎÉÅ
                     g(x1, . . . , xk ) = µy (f (x1, . . . , xk , y) = 0),
É ÐÏÔÏÍÕ ÏÐÅÒÁÔÏÒ ÍÉÎÉÍÉÚÁÃÉÉ ÔÁËÖÅ ÎÁÚÙ×ÁÀÔ µ-ÏÐÅÒÁÔÏÒÏÍ.
   ñÓÎÏ, ÞÔÏ ÔÁËÏÅ ÏÐÒÅÄÅÌÅÎÉÅ ÏÂÅÓÐÅÞÉ×ÁÅÔ ×ÙÞÉÓÌÉÍÏÓÔØ g, ÅÓÌÉ ×ÙÞÉ-
ÓÌÉÍÁ f (ÍÙ ÐÅÒÅÂÉÒÁÅÍ × ÐÏÒÑÄËÅ ×ÏÚÒÁÓÔÁÎÉÑ ×ÓÅ y, ÏÖÉÄÁÑ ÐÏÑ×ÌÅÎÉÑ
ÎÕÌÅ×ÏÇÏ ÚÎÁÞÅÎÉÑ).
   úÁÄÁÞÁ 207. ðÏËÁÖÉÔÅ, ÞÔÏ ÅÓÌÉ ÉÚÍÅÎÉÔØ ÏÐÒÅÄÅÌÅÎÉÅ É ÒÁÚÒÅÛÉÔØ
f (x1, . . . , xk , y 0 ) ÂÙÔØ ÎÅ ÏÐÒÅÄÅ̾ÎÎÙÍ ÐÒÉ y 0 < y, ÔÏ ÆÕÎËÃÉÑ g ÍÏÖÅÔ
ÂÙÔØ ÎÅ×ÙÞÉÓÌÉÍÏÊ ÐÒÉ ×ÙÞÉÓÌÉÍÏÊ f .
   æÕÎËÃÉÉ, ÐÏÌÕÞÁÀÝÉÅÓÑ ÉÚ ÂÁÚÉÓÎÙÈ (ÎÕÌÑ, ÐÒÏÅËÃÉÉ É ÐÒÉÂÁ×ÌÅÎÉÑ
ÅÄÉÎÉÃÙ) Ó ÐÏÍÏÝØÀ ÏÐÅÒÁÔÏÒÏ× ÐÏÄÓÔÁÎÏ×ËÉ, ÐÒÉÍÉÔÉ×ÎÏÊ ÒÅËÕÒÓÉÉ É ÍÉ-
ÎÉÍÉÚÁÃÉÉ, ÎÁÚÙ×ÁÀÔÓÑ ÞÁÓÔÉÞÎÏ ÒÅËÕÒÓÉ×ÎÙÍÉ. åÓÌÉ ÔÁËÁÑ ÆÕÎËÃÉÑ ÏËÁ-
ÚÙ×ÁÅÔÓÑ ×ÓÀÄÕ ÏÐÒÅÄÅ̾ÎÎÏÊ, ÔÏ Å¾ ÎÁÚÙ×ÁÀÔ ÏÂÝÅÒÅËÕÒÓÉ×ÎÏÊ ÆÕÎËÃÉÅÊ.