Математическая логика и теория алгоритмов. Самохин А.В. - 28 стр.

UptoLike

Составители: 

Рубрика: 

28 çÌÁ×Á I. íÎÏÖÅÓÔ×Á É ÍÏÝÎÏÓÔÉ
ÔÙ x X, ËÏÔÏÒÙÅ ÎÅ ÐÒÉÎÁÄÌÅÖÁÔ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÍÕ ÉÍ ÐÏÄÍÎÏÖÅÓÔ×Õ.
ðÕÓÔØ Z ¡ ÏÂÒÁÚÏ×ÁÎÎÏÅ ÉÍÉ ÍÎÏÖÅÓÔ×Ï:
Z = {x X | x / ϕ(x)}.
äÏËÁÖÅÍ, ÞÔÏ ÐÏÄÍÎÏÖÅÓÔ×Ï Z ÎÅ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÎÉËÁËÏÍÕ ÜÌÅÍÅÎÔÕ ÍÎÏ-
ÖÅÓÔ×Á X. ðÕÓÔØ ÜÔÏ ÎÅ ÔÁË É Z = ϕ(z) ÄÌÑ ÎÅËÏÔÏÒÏÇÏ ÜÌÅÍÅÎÔÁ z X.
ôÏÇÄÁ
z Z z / ϕ(z) z / Z
(ÐÅÒ×ÏÅ ¡ ÐÏ ÐÏÓÔÒÏÅÎÉÀ ÍÎÏÖÅÓÔ×Á Z, ×ÔÏÒÏÅ ¡ ÐÏ ÐÒÅÄÐÏÌÏÖÅÎÉÀ ϕ(z) =
= Z). ðÏÌÕÞÅÎÎÏÅ ÐÒÏÔÉ×ÏÒÅÞÉÅ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ Z ÄÅÊÓÔ×ÉÔÅÌØÎÏ ÎÉÞÅÍÕ
ÎÅ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ, ÔÁË ÞÔÏ ϕ ÎÅ ×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÏ.
ó ÄÒÕÇÏÊ, ÓÔÏÒÏÎÙ, ÌÀÂÏÅ ÍÎÏÖÅÓÔ×Ï X ÒÁ×ÎÏÍÏÝÎÏ ÎÅËÏÔÏÒÏÊ ÞÁÓÔÉ
ÍÎÏÖÅÓÔ×Á P(X). ÷ ÓÁÍÏÍ ÄÅÌÅ, ËÁÖÄÏÍÕ ÜÌÅÍÅÎÔÕ x X ÍÏÖÎÏ ÐÏÓÔÁ-
×ÉÔØ × ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÏÄÎÏÜÌÅÍÅÎÔÎÏÅ ÐÏÄÍÎÏÖÅÓÔ×Ï {x}. ðÏÜÔÏÍÕ, ×ÓÐÏÍÉ-
ÎÁÑ ÏÐÒÅÄÅÌÅÎÉÅ ÓÒÁ×ÎÅÎÉÑ ÍÎÏÖÅÓÔ× ÐÏ ÍÏÝÎÏÓÔÉ (Ó. 24), ÍÏÖÎÏ ÓËÁÚÁÔØ,
ÞÔÏ ÍÏÝÎÏÓÔØ ÍÎÏÖÅÓÔ×Á X ×ÓÅÇÄÁ ÍÅÎØÛÅ ÍÏÝÎÏÓÔÉ ÍÎÏÖÅÓÔ×Á P (X)
úÁÄÁÞÁ 50. äÏËÁÖÉÔÅ, ÞÔÏ n < 2
n
ÄÌÑ ×ÓÅÈ ÎÁÔÕÒÁÌØÎÙÈ n = 0, 1, 2, . . .
÷ ÄÏËÁÚÁÔÅÌØÓÔ×Å ÔÅÏÒÅÍÙ 8 ëÁÎÔÏÒ ×ÍÅÓÔÏ ÐÏÄÍÎÏÖÅÓÔ× ÒÁÓÓÕ-
ÖÄÁÌ Ï ÆÕÎËÃÉÑÈ, ÐÒÉÎÉÍÁÀÝÉÈ ÚÎÁÞÅÎÉÑ 0 É 1.
îÁ ÓÁÍÏÍ ÄÅÌÅ ÍÙ ÕÖÅ ÐÒÉÂÌÉÚÉÌÉÓØ Ë ÏÐÁÓÎÏÊ ÇÒÁÎÉÃÅ, ËÏÇÄÁ ÎÁÇÌÑÄ-
ÎÙÅ ÐÒÅÄÓÔÁ×ÌÅÎÉÑ Ï ÍÎÏÖÅÓÔ×ÁÈ ÐÒÉ×ÏÄÑÔ Ë ÐÒÏÔÉ×ÏÒÅÞÉÀ. ÷ ÓÁÍÏÍ ÄÅÌÅ,
ÒÁÓÓÍÏÔÒÉÍ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÍÎÏÖÅÓÔ× U, ÜÌÅÍÅÎÔÁÍÉ ËÏÔÏÒÏÇÏ Ñ×ÌÑÀÔÓÑ
×ÓÅ ÍÎÏÖÅÓÔ×Á. ôÏÇÄÁ, × ÞÁÓÔÎÏÓÔÉ, ×ÓÅ ÐÏÄÍÎÏÖÅÓÔ×Á ÍÎÏÖÅÓÔ×Á U ÂÕÄÕÔ
ÅÇÏ ÜÌÅÍÅÎÔÁÍÉ, É P (U) U, ÞÔÏ ÎÅ×ÏÚÍÏÖÎÏ ÐÏ ÔÅÏÒÅÍÅ ëÁÎÔÏÒÁ.
üÔÏ ÒÁÓÓÕÖÄÅÎÉÅ ÍÏÖÎÏ ÒÁÚ×ÅÒÎÕÔØ, ×ÓÐÏÍÎÉ× ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÔÅÏÒÅÍÙ
ëÁÎÔÏÒÁ ¡ ÐÏÌÕÞÉÔÓÑ ÔÁË ÎÁÚÙ×ÁÅÍÙÊ ÐÁÒÁÄÏËÓ òÁÓÓÅÌÁ. ÷ÏÔ ËÁË ÅÇÏ ÏÂÙÞ-
ÎÏ ÉÚÌÁÇÁÀÔ.
ôÉÐÉÞÎÙÅ ÍÎÏÖÅÓÔ×Á ÎÅ Ñ×ÌÑÀÔÓÑ Ó×ÏÉÍÉ ÜÌÅÍÅÎÔÁÍÉ. óËÁÖÅÍ, ÍÎÏ-
ÖÅÓÔ×Ï ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ N ÓÁÍÏ ÎÅ Ñ×ÌÑÅÔÓÑ ÎÁÔÕÒÁÌØÎÙÍ ÞÉÓÌÏÍ É ÐÏÔÏ-
ÍÕ ÎÅ ÂÕÄÅÔ Ó×ÏÉÍ ÜÌÅÍÅÎÔÏÍ. ïÄÎÁËÏ × ÐÒÉÎÃÉÐÅ ÍÏÖÎÏ ÓÅÂÅ ÐÒÅÄÓÔÁ×ÉÔØ É
ÍÎÏÖÅÓÔ×Ï, ËÏÔÏÒÏÅ Ñ×ÌÑÅÔÓÑ Ó×ÏÉÍ ÜÌÅÍÅÎÔÏÍ (ÎÁÐÒÉÍÅÒ, ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ
ÍÎÏÖÅÓÔ×). îÁÚÏ×¾Í ÔÁËÉÅ ÍÎÏÖÅÓÔ×Á ÎÅÏÂÙÞÎÙÍÉ. òÁÓÓÍÏÔÒÉÍ ÔÅÐÅÒØ ÍÎÏ-
ÖÅÓÔ×Ï ×ÓÅÈ ÏÂÙÞÎÙÈ ÍÎÏÖÅÓÔ×. âÕÄÅÔ ÌÉ ÏÎÏ ÏÂÙÞÎÙÍ? åÓÌÉ ÏÎÏ ÏÂÙÞÎÏÅ,
ÔÏ ÏÎÏ Ñ×ÌÑÅÔÓÑ Ó×ÏÉÍ ÜÌÅÍÅÎÔÏÍ É ÐÏÔÏÍÕ ÎÅÏÂÙÞÎÏÅ, É ÎÁÏÂÏÒÏÔ. ëÁË ÖÅ
ÔÁË?
íÏÄÉÆÉÃÉÒÏ×ÁÎÎÁÑ ×ÅÒÓÉÑ ÜÔÏÇÏ ÐÁÒÁÄÏËÓÁ ÔÁËÏ×Á: ÂÕÄÅÍ ÎÁÚÙ×ÁÔØ ÐÒÉ-
ÌÁÇÁÔÅÌØÎÏÅ ÓÁÍÏÐÒÉÍÅÎÉÍÙÍ, ÅÓÌÉ ÏÎÏ ÏÂÌÁÄÁÅÔ ÏÐÉÓÙ×ÁÅÍÙÍ Ó×ÏÊÓÔ×ÏÍ.
îÁÐÒÉÍÅÒ, ÐÒÉÌÁÇÁÔÅÌØÎÏÅ ÒÕÓÓËÉÊ ÓÁÍÏÐÒÉÍÅÎÉÍÏ, Á ÐÒÉÌÁÇÁÔÅÌØÎÏÅ ÇÌÉ-
ÎÑÎÙÊ ÎÅÔ. äÒÕÇÏÊ ÐÒÉÍÅÒ: ÐÒÉÌÁÇÁÔÅÌØÎÏÅ ÔÒ¾ÈÓÌÏÖÎÙÊ ÓÁÍÏÐÒÉÍÅÎÉÍÏ, Á
28                                        çÌÁ×Á I. íÎÏÖÅÓÔ×Á É ÍÏÝÎÏÓÔÉ

ÔÙ x ∈ X, ËÏÔÏÒÙÅ ÎÅ ÐÒÉÎÁÄÌÅÖÁÔ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÍÕ ÉÍ ÐÏÄÍÎÏÖÅÓÔ×Õ.
ðÕÓÔØ Z ¡ ÏÂÒÁÚÏ×ÁÎÎÏÅ ÉÍÉ ÍÎÏÖÅÓÔ×Ï:
                           Z = {x ∈ X | x ∈
                                          / ϕ(x)}.
äÏËÁÖÅÍ, ÞÔÏ ÐÏÄÍÎÏÖÅÓÔ×Ï Z ÎÅ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ ÎÉËÁËÏÍÕ ÜÌÅÍÅÎÔÕ ÍÎÏ-
ÖÅÓÔ×Á X. ðÕÓÔØ ÜÔÏ ÎÅ ÔÁË É Z = ϕ(z) ÄÌÑ ÎÅËÏÔÏÒÏÇÏ ÜÌÅÍÅÎÔÁ z ∈ X.
ôÏÇÄÁ
                        z∈Z⇔z∈     / ϕ(z) ⇔ z ∈
                                              /Z
(ÐÅÒ×ÏÅ ¡ ÐÏ ÐÏÓÔÒÏÅÎÉÀ ÍÎÏÖÅÓÔ×Á Z, ×ÔÏÒÏÅ ¡ ÐÏ ÐÒÅÄÐÏÌÏÖÅÎÉÀ ϕ(z) =
= Z). ðÏÌÕÞÅÎÎÏÅ ÐÒÏÔÉ×ÏÒÅÞÉÅ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ Z ÄÅÊÓÔ×ÉÔÅÌØÎÏ ÎÉÞÅÍÕ
ÎÅ ÓÏÏÔ×ÅÔÓÔ×ÕÅÔ, ÔÁË ÞÔÏ ϕ ÎÅ ×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÏ.
  ó ÄÒÕÇÏÊ, ÓÔÏÒÏÎÙ, ÌÀÂÏÅ ÍÎÏÖÅÓÔ×Ï X ÒÁ×ÎÏÍÏÝÎÏ ÎÅËÏÔÏÒÏÊ ÞÁÓÔÉ
ÍÎÏÖÅÓÔ×Á P (X). ÷ ÓÁÍÏÍ ÄÅÌÅ, ËÁÖÄÏÍÕ ÜÌÅÍÅÎÔÕ x ∈ X ÍÏÖÎÏ ÐÏÓÔÁ-
×ÉÔØ × ÓÏÏÔ×ÅÔÓÔ×ÉÅ ÏÄÎÏÜÌÅÍÅÎÔÎÏÅ ÐÏÄÍÎÏÖÅÓÔ×Ï {x}. ðÏÜÔÏÍÕ, ×ÓÐÏÍÉ-
ÎÁÑ ÏÐÒÅÄÅÌÅÎÉÅ ÓÒÁ×ÎÅÎÉÑ ÍÎÏÖÅÓÔ× ÐÏ ÍÏÝÎÏÓÔÉ (Ó. 24), ÍÏÖÎÏ ÓËÁÚÁÔØ,
ÞÔÏ ÍÏÝÎÏÓÔØ ÍÎÏÖÅÓÔ×Á X ×ÓÅÇÄÁ ÍÅÎØÛÅ ÍÏÝÎÏÓÔÉ ÍÎÏÖÅÓÔ×Á P (X)
     úÁÄÁÞÁ 50. äÏËÁÖÉÔÅ, ÞÔÏ n < 2n ÄÌÑ ×ÓÅÈ ÎÁÔÕÒÁÌØÎÙÈ n = 0, 1, 2, . . .
      ÷ ÄÏËÁÚÁÔÅÌØÓÔ×Å ÔÅÏÒÅÍÙ 8 ëÁÎÔÏÒ ×ÍÅÓÔÏ ÐÏÄÍÎÏÖÅÓÔ× ÒÁÓÓÕ-
      ÖÄÁÌ Ï ÆÕÎËÃÉÑÈ, ÐÒÉÎÉÍÁÀÝÉÈ ÚÎÁÞÅÎÉÑ 0 É 1.
   îÁ ÓÁÍÏÍ ÄÅÌÅ ÍÙ ÕÖÅ ÐÒÉÂÌÉÚÉÌÉÓØ Ë ÏÐÁÓÎÏÊ ÇÒÁÎÉÃÅ, ËÏÇÄÁ ÎÁÇÌÑÄ-
ÎÙÅ ÐÒÅÄÓÔÁ×ÌÅÎÉÑ Ï ÍÎÏÖÅÓÔ×ÁÈ ÐÒÉ×ÏÄÑÔ Ë ÐÒÏÔÉ×ÏÒÅÞÉÀ. ÷ ÓÁÍÏÍ ÄÅÌÅ,
ÒÁÓÓÍÏÔÒÉÍ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÍÎÏÖÅÓÔ× U, ÜÌÅÍÅÎÔÁÍÉ ËÏÔÏÒÏÇÏ Ñ×ÌÑÀÔÓÑ
×ÓÅ ÍÎÏÖÅÓÔ×Á. ôÏÇÄÁ, × ÞÁÓÔÎÏÓÔÉ, ×ÓÅ ÐÏÄÍÎÏÖÅÓÔ×Á ÍÎÏÖÅÓÔ×Á U ÂÕÄÕÔ
ÅÇÏ ÜÌÅÍÅÎÔÁÍÉ, É P (U ) ⊂ U , ÞÔÏ ÎÅ×ÏÚÍÏÖÎÏ ÐÏ ÔÅÏÒÅÍÅ ëÁÎÔÏÒÁ.
   üÔÏ ÒÁÓÓÕÖÄÅÎÉÅ ÍÏÖÎÏ ÒÁÚ×ÅÒÎÕÔØ, ×ÓÐÏÍÎÉ× ÄÏËÁÚÁÔÅÌØÓÔ×Ï ÔÅÏÒÅÍÙ
ëÁÎÔÏÒÁ ¡ ÐÏÌÕÞÉÔÓÑ ÔÁË ÎÁÚÙ×ÁÅÍÙÊ ÐÁÒÁÄÏËÓ òÁÓÓÅÌÁ. ÷ÏÔ ËÁË ÅÇÏ ÏÂÙÞ-
ÎÏ ÉÚÌÁÇÁÀÔ.
   ôÉÐÉÞÎÙÅ ÍÎÏÖÅÓÔ×Á ÎÅ Ñ×ÌÑÀÔÓÑ Ó×ÏÉÍÉ ÜÌÅÍÅÎÔÁÍÉ. óËÁÖÅÍ, ÍÎÏ-
ÖÅÓÔ×Ï ÎÁÔÕÒÁÌØÎÙÈ ÞÉÓÅÌ N ÓÁÍÏ ÎÅ Ñ×ÌÑÅÔÓÑ ÎÁÔÕÒÁÌØÎÙÍ ÞÉÓÌÏÍ É ÐÏÔÏ-
ÍÕ ÎÅ ÂÕÄÅÔ Ó×ÏÉÍ ÜÌÅÍÅÎÔÏÍ. ïÄÎÁËÏ × ÐÒÉÎÃÉÐÅ ÍÏÖÎÏ ÓÅÂÅ ÐÒÅÄÓÔÁ×ÉÔØ É
ÍÎÏÖÅÓÔ×Ï, ËÏÔÏÒÏÅ Ñ×ÌÑÅÔÓÑ Ó×ÏÉÍ ÜÌÅÍÅÎÔÏÍ (ÎÁÐÒÉÍÅÒ, ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ
ÍÎÏÖÅÓÔ×). îÁÚÏ×¾Í ÔÁËÉÅ ÍÎÏÖÅÓÔ×Á ÎÅÏÂÙÞÎÙÍÉ. òÁÓÓÍÏÔÒÉÍ ÔÅÐÅÒØ ÍÎÏ-
ÖÅÓÔ×Ï ×ÓÅÈ ÏÂÙÞÎÙÈ ÍÎÏÖÅÓÔ×. âÕÄÅÔ ÌÉ ÏÎÏ ÏÂÙÞÎÙÍ? åÓÌÉ ÏÎÏ ÏÂÙÞÎÏÅ,
ÔÏ ÏÎÏ Ñ×ÌÑÅÔÓÑ Ó×ÏÉÍ ÜÌÅÍÅÎÔÏÍ É ÐÏÔÏÍÕ ÎÅÏÂÙÞÎÏÅ, É ÎÁÏÂÏÒÏÔ. ëÁË ÖÅ
ÔÁË?
   íÏÄÉÆÉÃÉÒÏ×ÁÎÎÁÑ ×ÅÒÓÉÑ ÜÔÏÇÏ ÐÁÒÁÄÏËÓÁ ÔÁËÏ×Á: ÂÕÄÅÍ ÎÁÚÙ×ÁÔØ ÐÒÉ-
ÌÁÇÁÔÅÌØÎÏÅ ÓÁÍÏÐÒÉÍÅÎÉÍÙÍ, ÅÓÌÉ ÏÎÏ ÏÂÌÁÄÁÅÔ ÏÐÉÓÙ×ÁÅÍÙÍ Ó×ÏÊÓÔ×ÏÍ.
îÁÐÒÉÍÅÒ, ÐÒÉÌÁÇÁÔÅÌØÎÏÅ ÒÕÓÓËÉÊ ÓÁÍÏÐÒÉÍÅÎÉÍÏ, Á ÐÒÉÌÁÇÁÔÅÌØÎÏÅ ÇÌÉ-
ÎÑÎÙÊ ÎÅÔ. äÒÕÇÏÊ ÐÒÉÍÅÒ: ÐÒÉÌÁÇÁÔÅÌØÎÏÅ ÔÒ¾ÈÓÌÏÖÎÙÊ ÓÁÍÏÐÒÉÍÅÎÉÍÏ, Á