Математическая логика и теория алгоритмов. Самохин А.В. - 31 стр.

UptoLike

Составители: 

Рубрика: 

§7. æÕÎËÃÉÉ 31
úÁÄÁÞÁ 51. ÷ÏÐÒÏÓ ÄÌÑ ÓÁÍÏËÏÎÔÒÏÌÑ: ÏÔÎÏÛÅÎÉÑ ÂÙÔØ ÄÅÌÉÔÅÌÅÍ É
ÄÅÌÉÔØÓÑ ÎÁ ¡ ÜÔÏ ÏÄÎÏ É ÔÏ ÖÅ ÏÔÎÏÛÅÎÉÅ ÉÌÉ ÒÁÚÎÙÅ? (ïÔ×ÅÔ: ËÏ-
ÎÅÞÎÏ, ÒÁÚÎÙÅ ¡ × ÕÐÏÒÑÄÏÞÅÎÎÏÊ ÐÁÒÅ ÐÏÒÑÄÏË ÓÕÝÅÓÔ×ÅÎ.)
åÓÌÉ ÁÒÇÕÍÅÎÔÁÍÉ ÆÕÎËÃÉÉ Ñ×ÌÑÀÔÓÑ ÜÌÅÍÅÎÔÙ ÍÎÏÖÅÓÔ×Á A, Á ÚÎÁÞÅ-
ÎÉÑÍÉ ¡ ÜÌÅÍÅÎÔÙ ÍÎÏÖÅÓÔ×Á B, ÔÏ ÍÏÖÎÏ ÒÁÓÓÍÏÔÒÅÔØ ÏÔÎÏÛÅÎÉÅ ÍÅÖ-
ÄÕ A É B, ÓÏÓÔÏÑÝÅÅ ÉÚ ÐÁÒ ×ÉÄÁ hx, f(x)i. ðÏ ÁÎÁÌÏÇÉÉ Ó ÇÒÁÆÉËÁÍÉ ÆÕÎË-
ÃÉÊ ÎÁ ÐÌÏÓËÏÓÔÉ ÔÁËÏÅ ÍÎÏÖÅÓÔ×Ï ÍÏÖÎÏ ÎÁÚ×ÁÔØ ÇÒÁÆÉËÏÍ ÆÕÎËÃÉÉ f. ó
ÆÏÒÍÁÌØÎÏÊ ÔÏÞËÉ ÚÒÅÎÉÑ, ÏÄÎÁËÏ, ÕÄÏÂÎÅÅ ÎÅ ××ÏÄÉÔØ ÏÔÄÅÌØÎÏÇÏ ÎÅÏÐÒÅ-
ÄÅÌÑÅÍÏÇÏ ÐÏÎÑÔÉÑ ÆÕÎËÃÉÉ, Á ×ÍÅÓÔÏ ÜÔÏÇÏ ÏÔÏÖÄÅÓÔ×ÉÔØ ÆÕÎËÃÉÀ Ó Å¾
ÇÒÁÆÉËÏÍ.
ïÔÎÏÛÅÎÉÅ F A × B ÎÁÚÙ×ÁÅÔÓÑ ÆÕÎËÃÉÅÊ ÉÚ A × B, ÅÓÌÉ ÏÎÏ ÎÅ ÓÏ-
ÄÅÒÖÉÔ ÐÁÒ Ó ÏÄÉÎÁËÏ×ÙÍ ÐÅÒ×ÙÍ ÞÌÅÎÏÍ É ÒÁÚÎÙÍÉ ×ÔÏÒÙÍÉ. äÒÕÇÉÍÉ
ÓÌÏ×ÁÍÉ, ÜÔÏ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÄÌÑ ËÁÖÄÏÇÏ a A ÓÕÝÅÓÔ×ÕÅÔ ÎÅ ÂÏÌÅÅ ÏÄÎÏ-
ÇÏ b B, ÐÒÉ ËÏÔÏÒÏÍ ha, bi F .
ôÅ ÜÌÅÍÅÎÔÙ a A, ÄÌÑ ËÏÔÏÒÙÈ ÔÁËÏÅ b ÓÕÝÅÓÔ×ÕÅÔ, ÏÂÒÁÚÕÀÔ ÏÂÌÁÓÔØ
ÏÐÒÅÄÅÌÅÎÉÑ ÆÕÎËÃÉÉ F . ïÎÁ ÏÂÏÚÎÁÞÁÅÔÓÑ Dom F (ÏÔ ÁÎÇÌÉÊÓËÏÇÏ ÓÌÏ×Á do-
main). äÌÑ ÌÀÂÏÇÏ ÜÌÅÍÅÎÔÁ a Dom F ÍÏÖÎÏ ÏÐÒÅÄÅÌÉÔØ ÚÎÁÞÅÎÉÅ ÆÕÎË-
ÃÉÉ F ÎÁ ÁÒÇÕÍÅÎÔÅ a (× ÔÏÞËÅ a, ËÁË ÉÎÏÇÄÁ ÇÏ×ÏÒÑÔ) ËÁË ÔÏÔ ÅÄÉÎÓÔ×ÅÎÎÙÊ
ÜÌÅÍÅÎÔ b B, ÄÌÑ ËÏÔÏÒÏÇÏ ha, bi F . üÔÏÔ ÜÌÅÍÅÎÔ ÚÁÐÉÓÙ×ÁÀÔ ËÁË F (a).
÷ÓÅ ÔÁËÉÅ ÜÌÅÍÅÎÔÙ b ÏÂÒÁÚÕÀÔ ÍÎÏÖÅÓÔ×Ï ÚÎÁÞÅÎÉÊ ÆÕÎËÃÉÉ F , ËÏÔÏÒÏÅ
ÏÂÏÚÎÁÞÁÅÔÓÑ Val F.
åÓÌÉ a / Dom F, ÔÏ ÇÏ×ÏÒÑÔ, ÞÔÏ ÆÕÎËÃÉÑ ÎÅ ÏÐÒÅÄÅÌÅÎÁ ÎÁ a. úÁÍÅÔÉÍ,
ÞÔÏ ÐÏ ÎÁÛÅÍÕ ÏÐÒÅÄÅÌÅÎÉÀ ÆÕÎËÃÉÑ ÉÚ A × B ÎÅ ÏÂÑÚÁÎÁ ÂÙÔØ ÏÐÒÅÄÅÌÅÎÁ
ÎÁ ×ÓÅÈ ÜÌÅÍÅÎÔÁÈ ÍÎÏÖÅÓÔ×Á A ¡ ž ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ÍÏÖÅÔ ÂÙÔØ ÌÀ-
ÂÙÍ ÐÏÄÍÎÏÖÅÓÔ×ÏÍ ÍÎÏÖÅÓÔ×Á A. óÉÍÍÅÔÒÉÞÎÙÍ ÏÂÒÁÚÏÍ ÍÎÏÖÅÓÔ×Ï Å¾
ÚÎÁÞÅÎÉÊ ÍÏÖÅÔ ÎÅ ÓÏ×ÐÁÄÁÔØ Ó ÍÎÏÖÅÓÔ×ÏÍ B.
åÓÌÉ ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ÆÕÎËÃÉÉ f ÉÚ A × B ÓÏ×ÐÁÄÁÅÔ Ó A, ÔÏ ÐÉÛÕÔ
f : A B.
ðÒÉÍÅÒ: ÔÏÖÄÅÓÔ×ÅÎÎÁÑ ÆÕÎËÃÉÑ id
A
: A A ÐÅÒÅ×ÏÄÉÔ ÍÎÏÖÅÓÔ×Ï A
× ÓÅÂÑ, ÐÒÉÞ¾Í id(a) = a ÄÌÑ ÌÀÂÏÇÏ a A. ïÎÁ ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ ÍÎÏ-
ÖÅÓÔ×Ï ÐÁÒ ×ÉÄÁ ha, ai ÄÌÑ ×ÓÅÈ a A. (éÎÄÅËÓ A × id
A
ÉÎÏÇÄÁ ÏÐÕÓËÁÀÔ,
ÅÓÌÉ ÑÓÎÏ, Ï ËÁËÏÍ ÍÎÏÖÅÓÔ×Å ÉÄ¾Ô ÒÅÞØ.)
ëÏÍÐÏÚÉÃÉÅÊ Ä×ÕÈ ÆÕÎËÃÉÊ f : A B É g : B C ÎÁÚÙ×ÁÀÔ ÆÕÎËÃÉÀ
h: A C, ÏÐÒÅÄÅ̾ÎÎÕÀ ÓÏÏÔÎÏÛÅÎÉÅÍ h(x) = g(f (x)). äÒÕÇÉÍÉ ÓÌÏ×ÁÍÉ,
h ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ ÍÎÏÖÅÓÔ×Ï ÐÁÒ
{ha, ci | ha, bi f É hb, ci g ÄÌÑ ÎÅËÏÔÏÒÏÇÏ b B}.
ëÏÍÐÏÚÉÃÉÑ ÆÕÎËÃÉÊ ÏÂÏÚÎÁÞÁÅÔÓÑ g f (ÍÙ, ËÁË É × ÂÏÌØÛÉÎÓÔ×Å ËÎÉÇ,
ÐÉÛÅÍ ÓÐÒÁ×Á ÆÕÎËÃÉÀ, ËÏÔÏÒÁÑ ÐÒÉÍÅÎÑÅÔÓÑ ÐÅÒ×ÏÊ).
§7. æÕÎËÃÉÉ                                                             31

   úÁÄÁÞÁ 51. ÷ÏÐÒÏÓ ÄÌÑ ÓÁÍÏËÏÎÔÒÏÌÑ: ÏÔÎÏÛÅÎÉÑ ÂÙÔØ ÄÅÌÉÔÅÌÅÍ É
ÄÅÌÉÔØÓÑ ÎÁ ¡ ÜÔÏ ÏÄÎÏ É ÔÏ ÖÅ ÏÔÎÏÛÅÎÉÅ ÉÌÉ ÒÁÚÎÙÅ? (ïÔ×ÅÔ: ËÏ-
ÎÅÞÎÏ, ÒÁÚÎÙÅ ¡ × ÕÐÏÒÑÄÏÞÅÎÎÏÊ ÐÁÒÅ ÐÏÒÑÄÏË ÓÕÝÅÓÔ×ÅÎ.)
    åÓÌÉ ÁÒÇÕÍÅÎÔÁÍÉ ÆÕÎËÃÉÉ Ñ×ÌÑÀÔÓÑ ÜÌÅÍÅÎÔÙ ÍÎÏÖÅÓÔ×Á A, Á ÚÎÁÞÅ-
ÎÉÑÍÉ ¡ ÜÌÅÍÅÎÔÙ ÍÎÏÖÅÓÔ×Á B, ÔÏ ÍÏÖÎÏ ÒÁÓÓÍÏÔÒÅÔØ ÏÔÎÏÛÅÎÉÅ ÍÅÖ-
ÄÕ A É B, ÓÏÓÔÏÑÝÅÅ ÉÚ ÐÁÒ ×ÉÄÁ hx, f (x)i. ðÏ ÁÎÁÌÏÇÉÉ Ó ÇÒÁÆÉËÁÍÉ ÆÕÎË-
ÃÉÊ ÎÁ ÐÌÏÓËÏÓÔÉ ÔÁËÏÅ ÍÎÏÖÅÓÔ×Ï ÍÏÖÎÏ ÎÁÚ×ÁÔØ ÇÒÁÆÉËÏÍ ÆÕÎËÃÉÉ f . ó
ÆÏÒÍÁÌØÎÏÊ ÔÏÞËÉ ÚÒÅÎÉÑ, ÏÄÎÁËÏ, ÕÄÏÂÎÅÅ ÎÅ ××ÏÄÉÔØ ÏÔÄÅÌØÎÏÇÏ ÎÅÏÐÒÅ-
ÄÅÌÑÅÍÏÇÏ ÐÏÎÑÔÉÑ ÆÕÎËÃÉÉ, Á ×ÍÅÓÔÏ ÜÔÏÇÏ ÏÔÏÖÄÅÓÔ×ÉÔØ ÆÕÎËÃÉÀ Ó Å¾
ÇÒÁÆÉËÏÍ.
    ïÔÎÏÛÅÎÉÅ F ⊂ A × B ÎÁÚÙ×ÁÅÔÓÑ ÆÕÎËÃÉÅÊ ÉÚ A × B, ÅÓÌÉ ÏÎÏ ÎÅ ÓÏ-
ÄÅÒÖÉÔ ÐÁÒ Ó ÏÄÉÎÁËÏ×ÙÍ ÐÅÒ×ÙÍ ÞÌÅÎÏÍ É ÒÁÚÎÙÍÉ ×ÔÏÒÙÍÉ. äÒÕÇÉÍÉ
ÓÌÏ×ÁÍÉ, ÜÔÏ ÏÚÎÁÞÁÅÔ, ÞÔÏ ÄÌÑ ËÁÖÄÏÇÏ a ∈ A ÓÕÝÅÓÔ×ÕÅÔ ÎÅ ÂÏÌÅÅ ÏÄÎÏ-
ÇÏ b ∈ B, ÐÒÉ ËÏÔÏÒÏÍ ha, bi ∈ F .
    ôÅ ÜÌÅÍÅÎÔÙ a ∈ A, ÄÌÑ ËÏÔÏÒÙÈ ÔÁËÏÅ b ÓÕÝÅÓÔ×ÕÅÔ, ÏÂÒÁÚÕÀÔ ÏÂÌÁÓÔØ
ÏÐÒÅÄÅÌÅÎÉÑ ÆÕÎËÃÉÉ F . ïÎÁ ÏÂÏÚÎÁÞÁÅÔÓÑ Dom F (ÏÔ ÁÎÇÌÉÊÓËÏÇÏ ÓÌÏ×Á do-
main). äÌÑ ÌÀÂÏÇÏ ÜÌÅÍÅÎÔÁ a ∈ Dom F ÍÏÖÎÏ ÏÐÒÅÄÅÌÉÔØ ÚÎÁÞÅÎÉÅ ÆÕÎË-
ÃÉÉ F ÎÁ ÁÒÇÕÍÅÎÔÅ a (× ÔÏÞËÅ a, ËÁË ÉÎÏÇÄÁ ÇÏ×ÏÒÑÔ) ËÁË ÔÏÔ ÅÄÉÎÓÔ×ÅÎÎÙÊ
ÜÌÅÍÅÎÔ b ∈ B, ÄÌÑ ËÏÔÏÒÏÇÏ ha, bi ∈ F . üÔÏÔ ÜÌÅÍÅÎÔ ÚÁÐÉÓÙ×ÁÀÔ ËÁË F (a).
÷ÓÅ ÔÁËÉÅ ÜÌÅÍÅÎÔÙ b ÏÂÒÁÚÕÀÔ ÍÎÏÖÅÓÔ×Ï ÚÎÁÞÅÎÉÊ ÆÕÎËÃÉÉ F , ËÏÔÏÒÏÅ
ÏÂÏÚÎÁÞÁÅÔÓÑ Val F .
    åÓÌÉ a ∈
           / Dom F , ÔÏ ÇÏ×ÏÒÑÔ, ÞÔÏ ÆÕÎËÃÉÑ ÎÅ ÏÐÒÅÄÅÌÅÎÁ ÎÁ a. úÁÍÅÔÉÍ,
ÞÔÏ ÐÏ ÎÁÛÅÍÕ ÏÐÒÅÄÅÌÅÎÉÀ ÆÕÎËÃÉÑ ÉÚ A × B ÎÅ ÏÂÑÚÁÎÁ ÂÙÔØ ÏÐÒÅÄÅÌÅÎÁ
ÎÁ ×ÓÅÈ ÜÌÅÍÅÎÔÁÈ ÍÎÏÖÅÓÔ×Á A ¡ ž ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ÍÏÖÅÔ ÂÙÔØ ÌÀ-
ÂÙÍ ÐÏÄÍÎÏÖÅÓÔ×ÏÍ ÍÎÏÖÅÓÔ×Á A. óÉÍÍÅÔÒÉÞÎÙÍ ÏÂÒÁÚÏÍ ÍÎÏÖÅÓÔ×Ï Å¾
ÚÎÁÞÅÎÉÊ ÍÏÖÅÔ ÎÅ ÓÏ×ÐÁÄÁÔØ Ó ÍÎÏÖÅÓÔ×ÏÍ B.
    åÓÌÉ ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ÆÕÎËÃÉÉ f ÉÚ A × B ÓÏ×ÐÁÄÁÅÔ Ó A, ÔÏ ÐÉÛÕÔ
f : A → B.
    ðÒÉÍÅÒ: ÔÏÖÄÅÓÔ×ÅÎÎÁÑ ÆÕÎËÃÉÑ idA : A → A ÐÅÒÅ×ÏÄÉÔ ÍÎÏÖÅÓÔ×Ï A
× ÓÅÂÑ, ÐÒÉÞ¾Í id(a) = a ÄÌÑ ÌÀÂÏÇÏ a ∈ A. ïÎÁ ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ ÍÎÏ-
ÖÅÓÔ×Ï ÐÁÒ ×ÉÄÁ ha, ai ÄÌÑ ×ÓÅÈ a ∈ A. (éÎÄÅËÓ A × idA ÉÎÏÇÄÁ ÏÐÕÓËÁÀÔ,
ÅÓÌÉ ÑÓÎÏ, Ï ËÁËÏÍ ÍÎÏÖÅÓÔ×Å ÉÄ¾Ô ÒÅÞØ.)
    ëÏÍÐÏÚÉÃÉÅÊ Ä×ÕÈ ÆÕÎËÃÉÊ f : A → B É g : B → C ÎÁÚÙ×ÁÀÔ ÆÕÎËÃÉÀ
h : A → C, ÏÐÒÅÄÅ̾ÎÎÕÀ ÓÏÏÔÎÏÛÅÎÉÅÍ h(x) = g(f (x)). äÒÕÇÉÍÉ ÓÌÏ×ÁÍÉ,
h ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ ÍÎÏÖÅÓÔ×Ï ÐÁÒ
           {ha, ci | ha, bi ∈ f É hb, ci ∈ g ÄÌÑ ÎÅËÏÔÏÒÏÇÏ b ∈ B}.
ëÏÍÐÏÚÉÃÉÑ ÆÕÎËÃÉÊ ÏÂÏÚÎÁÞÁÅÔÓÑ g ◦ f (ÍÙ, ËÁË É × ÂÏÌØÛÉÎÓÔ×Å ËÎÉÇ,
ÐÉÛÅÍ ÓÐÒÁ×Á ÆÕÎËÃÉÀ, ËÏÔÏÒÁÑ ÐÒÉÍÅÎÑÅÔÓÑ ÐÅÒ×ÏÊ).