Математическая логика и теория алгоритмов. Самохин А.В. - 32 стр.

UptoLike

Составители: 

Рубрика: 

32 çÌÁ×Á I. íÎÏÖÅÓÔ×Á É ÍÏÝÎÏÓÔÉ
ïÞÅ×ÉÄÎÏ, ËÏÍÐÏÚÉÃÉÑ (ËÁË ÏÐÅÒÁÃÉÑ ÎÁÄ ÆÕÎËÃÉÑÍÉ) ÁÓÓÏÃÉÁÔÉ×ÎÁ, ÔÏ
ÅÓÔØ h(f g) = (hf)g, ÐÏÜÔÏÍÕ × ËÏÍÐÏÚÉÃÉÉ ÎÅÓËÏÌØËÉÈ ÐÏÄÒÑÄ ÉÄÕÝÉÈ
ÆÕÎËÃÉÊ ÍÏÖÎÏ ÏÐÕÓËÁÔØ ÓËÏÂËÉ.
ðÕÓÔØ f : A B. ðÒÏÏÂÒÁÚÏÍ ÐÏÄÍÎÏÖÅÓÔ×Á B
0
B ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏ-
ÖÅÓÔ×Ï ×ÓÅÈ ÜÌÅÍÅÎÔÏ× x A, ÄÌÑ ËÏÔÏÒÙÈ f (x) B
0
. ïÎÏ ÏÂÏÚÎÁÞÁÅÔ-
ÓÑ f
1
(B
0
):
f
1
(B
0
) = {x A | f(x) B
0
}.
ïÂÒÁÚÏÍ ÍÎÏÖÅÓÔ×Á A
0
A ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÚÎÁÞÅÎÉÊ ÆÕÎËÃÉÉ f
ÎÁ ×ÓÅÈ ÜÌÅÍÅÎÔÁÈ ÍÎÏÖÅÓÔ×Á A
0
. ïÎÏ ÏÂÏÚÎÁÞÁÅÔÓÑ f(A
0
):
f(A
0
) = {f(a) | a A
0
} =
= {b B | ha, bi f ÄÌÑ ÎÅËÏÔÏÒÏÇÏ a A
0
}.
óÔÒÏÇÏ ÇÏ×ÏÒÑ, ÏÂÏÚÎÁÞÅÎÉÅ f(A
0
) ÍÏÖÅÔ ÐÒÉ×ÅÓÔÉ Ë ÐÕÔÁÎÉÃÅ ÄÎÉ É ÔÅ
ÖÅ ËÒÕÇÌÙÅ ÓËÏÂËÉ ÕÐÏÔÒÅÂÌÑÀÔÓÑ É ÄÌÑ ÚÎÁÞÅÎÉÑ ÆÕÎËÃÉÉ, É ÄÌÑ ÏÂÒÁÚÁ
ÍÎÏÖÅÓÔ×Á), ÎÏ ÏÂÙÞÎÏ ÑÓÎÏ, ÞÔÏ ÉÍÅÅÔÓÑ × ×ÉÄÕ.
úÁÄÁÞÁ 52. ëÁËÉÅ ÉÚ ÓÌÅÄÕÀÝÉÈ ÒÁ×ÅÎÓÔ× ×ÅÒÎÙ?
f(A
0
A
00
) = f(A
0
) f(A
00
);
f(A
0
A
00
) = f(A
0
) f(A
00
);
f(A
0
\ A
00
) = f(A
0
) \ f(A
00
);
f
1
(B
0
B
00
) = f
1
(B
0
) f
1
(B
00
);
f
1
(B
0
B
00
) = f
1
(B
0
) f
1
(B
00
);
f
1
(B
0
\ B
00
) = f
1
(B
0
) \ f
1
(B
00
);
f
1
(f(A
0
)) A
0
;
f
1
(f(A
0
)) A
0
;
f(f
1
(B
0
)) B
0
;
f(f
1
(B
0
)) B
0
;
(g f)(A) = g(f(A));
(g f)
1
(C
0
) = f
1
(g
1
(C
0
));
(úÄÅÓØ f : A B, g : B C, A
0
, A
00
A, B
0
, B
00
B, C
0
C.)
éÎÏÇÄÁ ×ÍÅÓÔÏ ÆÕÎËÃÉÊ ÇÏ×ÏÒÑÔ Ï ÏÔÏÂÒÁÖÅÎÉÑÈ (ÒÅÚÅÒ×ÉÒÕÑ ÔÅÒÍÉÎ
ÆÕÎËÃÉÑ ÄÌÑ ÏÔÏÂÒÁÖÅÎÉÊ Ó ÞÉÓÌÏ×ÙÍÉ ÁÒÇÕÍÅÎÔÁÍÉ É ÚÎÁÞÅÎÉÑÍÉ). íÙ
ÎÅ ÂÕÄÅÍ ÓÔÒÏÇÏ ÐÒÉÄÅÒÖÉ×ÁÔØÓÑ ÔÁËÉÈ ÒÁÚÌÉÞÉÊ, ÕÐÏÔÒÅÂÌÑÑ ÓÌÏ×Á ÏÔÏ-
ÂÒÁÖÅÎÉÅ É ÆÕÎËÃÉÑ ËÁË ÓÉÎÏÎÉÍÙ.
32                                                çÌÁ×Á I. íÎÏÖÅÓÔ×Á É ÍÏÝÎÏÓÔÉ

   ïÞÅ×ÉÄÎÏ, ËÏÍÐÏÚÉÃÉÑ (ËÁË ÏÐÅÒÁÃÉÑ ÎÁÄ ÆÕÎËÃÉÑÍÉ) ÁÓÓÏÃÉÁÔÉ×ÎÁ, ÔÏ
ÅÓÔØ h◦(f ◦g) = (h◦f )◦g, ÐÏÜÔÏÍÕ × ËÏÍÐÏÚÉÃÉÉ ÎÅÓËÏÌØËÉÈ ÐÏÄÒÑÄ ÉÄÕÝÉÈ
ÆÕÎËÃÉÊ ÍÏÖÎÏ ÏÐÕÓËÁÔØ ÓËÏÂËÉ.
   ðÕÓÔØ f : A → B. ðÒÏÏÂÒÁÚÏÍ ÐÏÄÍÎÏÖÅÓÔ×Á B 0 ⊂ B ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏ-
ÖÅÓÔ×Ï ×ÓÅÈ ÜÌÅÍÅÎÔÏ× x ∈ A, ÄÌÑ ËÏÔÏÒÙÈ f (x) ∈ B 0 . ïÎÏ ÏÂÏÚÎÁÞÁÅÔ-
ÓÑ f −1(B 0 ):
                      f −1(B 0 ) = {x ∈ A | f (x) ∈ B 0 }.
ïÂÒÁÚÏÍ ÍÎÏÖÅÓÔ×Á A0 ⊂ A ÎÁÚÙ×ÁÅÔÓÑ ÍÎÏÖÅÓÔ×Ï ×ÓÅÈ ÚÎÁÞÅÎÉÊ ÆÕÎËÃÉÉ f
ÎÁ ×ÓÅÈ ÜÌÅÍÅÎÔÁÈ ÍÎÏÖÅÓÔ×Á A0 . ïÎÏ ÏÂÏÚÎÁÞÁÅÔÓÑ f (A0):
              f (A0) = {f (a) | a ∈ A0 } =
                    = {b ∈ B | ha, bi ∈ f ÄÌÑ ÎÅËÏÔÏÒÏÇÏ a ∈ A0 }.
óÔÒÏÇÏ ÇÏ×ÏÒÑ, ÏÂÏÚÎÁÞÅÎÉÅ f (A0) ÍÏÖÅÔ ÐÒÉ×ÅÓÔÉ Ë ÐÕÔÁÎÉÃÅ (ÏÄÎÉ É ÔÅ
ÖÅ ËÒÕÇÌÙÅ ÓËÏÂËÉ ÕÐÏÔÒÅÂÌÑÀÔÓÑ É ÄÌÑ ÚÎÁÞÅÎÉÑ ÆÕÎËÃÉÉ, É ÄÌÑ ÏÂÒÁÚÁ
ÍÎÏÖÅÓÔ×Á), ÎÏ ÏÂÙÞÎÏ ÑÓÎÏ, ÞÔÏ ÉÍÅÅÔÓÑ × ×ÉÄÕ.
     úÁÄÁÞÁ 52. ëÁËÉÅ ÉÚ ÓÌÅÄÕÀÝÉÈ ÒÁ×ÅÎÓÔ× ×ÅÒÎÙ?
                         f (A0 ∩ A00 ) = f (A0) ∩ f (A00 );
                         f (A0 ∪ A00 ) = f (A0) ∪ f (A00 );
                          f (A0 \ A00 ) = f (A0) \ f (A00 );
                      f −1(B 0 ∩ B 00 ) = f −1(B 0) ∩ f −1(B 00 );
                      f −1(B 0 ∪ B 00 ) = f −1(B 0) ∪ f −1(B 00 );
                       f −1(B 0 \ B 00 ) = f −1(B 0) \ f −1(B 00 );
                         f −1(f (A0)) ⊂ A0 ;
                         f −1(f (A0)) ⊃ A0 ;
                         f (f −1(B 0 )) ⊂ B 0 ;
                         f (f −1(B 0 )) ⊃ B 0 ;
                          (g ◦ f )(A) = g(f (A));
                       (g ◦ f )−1(C 0) = f −1(g −1(C 0));
(úÄÅÓØ f : A → B, g : B → C, A0 , A00 ⊂ A, B 0 , B 00 ⊂ B, C 0 ⊂ C.)

   éÎÏÇÄÁ ×ÍÅÓÔÏ ÆÕÎËÃÉÊ ÇÏ×ÏÒÑÔ Ï ÏÔÏÂÒÁÖÅÎÉÑÈ (ÒÅÚÅÒ×ÉÒÕÑ ÔÅÒÍÉÎ
ÆÕÎËÃÉÑ ÄÌÑ ÏÔÏÂÒÁÖÅÎÉÊ Ó ÞÉÓÌÏ×ÙÍÉ ÁÒÇÕÍÅÎÔÁÍÉ É ÚÎÁÞÅÎÉÑÍÉ). íÙ
ÎÅ ÂÕÄÅÍ ÓÔÒÏÇÏ ÐÒÉÄÅÒÖÉ×ÁÔØÓÑ ÔÁËÉÈ ÒÁÚÌÉÞÉÊ, ÕÐÏÔÒÅÂÌÑÑ ÓÌÏ×Á ÏÔÏ-
ÂÒÁÖÅÎÉÅ É ÆÕÎËÃÉÑ ËÁË ÓÉÎÏÎÉÍÙ.