Математическая логика и теория алгоритмов. Самохин А.В. - 33 стр.

UptoLike

Составители: 

Рубрика: 

§7. æÕÎËÃÉÉ 33
æÕÎËÃÉÑ f : A B ÎÁÚÙ×ÁÅÔÓÑ ÉÎßÅËÔÉ×ÎÏÊ, ÉÌÉ ÉÎßÅËÃÉÅÊ, ÉÌÉ ×ÌÏ-
ÖÅÎÉÅÍ, ÅÓÌÉ ÏÎÁ ÐÅÒÅ×ÏÄÉÔ ÒÁÚÎÙÅ ÜÌÅÍÅÎÔÙ × ÒÁÚÎÙÅ, ÔÏ ÅÓÔØ ÅÓÌÉ f(a
1
) 6=
6= f(a
2
) ÐÒÉ ÒÁÚÌÉÞÎÙÈ a
1
É a
2
.
æÕÎËÃÉÑ f : A B ÎÁÚÙ×ÁÅÔÓÑ ÓÀÒßÅËÔÉ×ÎÏÊ, ÉÌÉ ÓÀÒßÅËÃÉÅÊ, ÉÌÉ ÎÁ-
ÌÏÖÅÎÉÅÍ, ÅÓÌÉ ÍÎÏÖÅÓÔ×Ï Å¾ ÚÎÁÞÅÎÉÊ ÅÓÔØ ×Ó¾ B. (éÎÏÇÄÁ ÔÁËÉÅ ÆÕÎËÃÉÉ
ÎÁÚÙ×ÁÀÔ ÏÔÏÂÒÁÖÅÎÉÑÍÉ ÎÁ B.)
üÔÉ Ä×Á ÏÐÒÅÄÅÌÅÎÉÑ ÂÏÌÅÅ ÓÉÍÍÅÔÒÉÞÎÙ, ÞÅÍ ÍÏÖÅÔ ÐÏËÁÚÁÔØÓÑ ÎÁ ÐÅÒ-
×ÙÊ ×ÚÇÌÑÄ, ËÁË ÐÏËÁÚÙ×ÁÀÔ ÔÁËÉÅ ÚÁÄÁÞÉ:
úÁÄÁÞÁ 53. äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎËÃÉÑ f : A B Ñ×ÌÑÅÔÓÑ ×ÌÏÖÅÎÉÅÍ
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÏÎÁ ÉÍÅÅÔ ÌÅ×ÕÀ ÏÂÒÁÔÎÕÀ ÆÕÎËÃÉÀ g : B
A, ÔÏ ÅÓÔØ ÆÕÎËÃÉÀ g, ÄÌÑ ËÏÔÏÒÏÊ gf = id
A
. äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎËÃÉÑ
f : A B Ñ×ÌÑÅÔÓÑ ÎÁÌÏÖÅÎÉÅÍ ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÏÎÁ ÉÍÅÅÔ
ÐÒÁ×ÕÀ ÏÂÒÁÔÎÕÀ ÆÕÎËÃÉÀ g : B A, ÄÌÑ ËÏÔÏÒÏÊ f g = id
B
.
úÁÄÁÞÁ 54. äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎËÃÉÑ f : A B Ñ×ÌÑÅÔÓÑ ×ÌÏÖÅÎÉÅÍ
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÎÁ Ξ ÍÏÖÎÏ ÓÏËÒÁÝÁÔØ ÓÌÅ×Á: ÉÚ ÒÁ×ÅÎ-
ÓÔ×Á f g
1
= f g
2
ÓÌÅÄÕÅÔ ÒÁ×ÅÎÓÔ×Ï g
1
= g
2
(ÄÌÑ ÌÀÂÙÈ ÆÕÎËÃÉÊ g
1
,
g
2
, ÏÂÌÁÓÔÉ ÚÎÁÞÅÎÉÊ ËÏÔÏÒÙÈ ÓÏÄÅÒÖÁÔÓÑ × A). äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎË-
ÃÉÑ f : A B Ñ×ÌÑÅÔÓÑ ÎÁÌÏÖÅÎÉÅÍ ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÎÁ Ξ
ÍÏÖÎÏ ÓÏËÒÁÝÁÔØ ÓÐÒÁ×Á: ÉÚ ÒÁ×ÅÎÓÔ×Á g
1
f = g
2
f ÓÌÅÄÕÅÔ ÒÁ×ÅÎÓÔ×Ï
g
1
= g
2
(ÄÌÑ ÌÀÂÙÈ ÆÕÎËÃÉÊ g
1
, g
2
, ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ËÏÔÏÒÙÈ ÅÓÔØ B).
ïÔÏÂÒÁÖÅÎÉÅ (ÆÕÎËÃÉÑ) f : A B, ËÏÔÏÒÏÅ ÏÄÎÏ×ÒÅÍÅÎÎÏ Ñ×ÌÑÅÔÓÑ ÉÎß-
ÅËÃÉÅÊ É ÓÀÒßÅËÃÉÅÊ (×ÌÏÖÅÎÉÅÍ É ÎÁÌÏÖÅÎÉÅÍ), ÎÁÚÙ×ÁÅÔÓÑ ÂÉÅËÃÉÅÊ, ÉÌÉ
×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÙÍ ÓÏÏÔ×ÅÔÓÔ×ÉÅÍ.
åÓÌÉ f ¡ ÂÉÅËÃÉÑ, ÔÏ ÓÕÝÅÓÔ×ÕÅÔ ÏÂÒÁÔÎÁÑ ÆÕÎËÃÉÑ f
1
, ÄÌÑ ËÏÔÏÒÏÊ
f
1
(y) = x f(x) = y.
úÁÄÁÞÁ 55. íÏÇÕÔ ÌÉ ÄÌÑ ÎÅËÏÔÏÒÏÊ ÆÕÎËÃÉÉ ÌÅ×ÁÑ É ÐÒÁ×ÁÑ ÏÂÒÁÔ-
ÎÙÅ ÓÕÝÅÓÔ×Ï×ÁÔØ, ÎÏ ÂÙÔØ ÒÁÚÌÉÞÎÙ?
îÁÐÏÍÎÉÍ, ÞÔÏ ÍÎÏÖÅÓÔ×Á A É B ÒÁ×ÎÏÍÏÝÎÙ, ÅÓÌÉ ÓÕÝÅÓÔ×ÕÅÔ ÂÉÅËÃÉÑ
f : A B. ÷ ËÁËÏÍ ÓÌÕÞÁÅ ÓÕÝÅÓÔ×ÕÅÔ ÉÎßÅËÃÉÑ (×ÌÏÖÅÎÉÅ) f : A B?
ìÅÇËÏ ÐÏÎÑÔØ, ÞÔÏ ×ÌÏÖÅÎÉÅ Ñ×ÌÑÅÔÓÑ ×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÙÍ ÓÏÏÔ×ÅÔÓÔ×ÉÅÍ
ÍÅÖÄÕ A É ÎÅËÏÔÏÒÙÍ ÐÏÄÍÎÏÖÅÓÔ×ÏÍ ÍÎÏÖÅÓÔ×Á B, ÐÏÜÔÏÍÕ ÔÁËÏÅ ×ÌÏÖÅ-
ÎÉÅ ÓÕÝÅÓÔ×ÕÅÔ ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ × B ÅÓÔØ ÐÏÄÍÎÏÖÅÓÔ×Ï, ÒÁ×-
ÎÏÍÏÝÎÏÅ A, Ô. Å. ËÏÇÄÁ ÍÏÝÎÏÓÔØ A ÎÅ ÐÒÅ×ÏÓÈÏÄÉÔ ÍÏÝÎÏÓÔÉ B ÓÍÙÓÌÅ
ÏÐÒÅÄÅÌÅÎÉÑ, ÄÁÎÎÏÇÏ × ÒÁÚÄÅÌÅ 5).
þÕÔØ ÍÅÎÅÅ ÏÞÅ×ÉÄÅÎ ÄÒÕÇÏÊ ÒÅÚÕÌØÔÁÔ: ÎÁÌÏÖÅÎÉÅ A ÎÁ B ÓÕÝÅÓÔ×ÕÅÔ
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÍÏÝÎÏÓÔØ B ÎÅ ÐÒÅ×ÏÓÈÏÄÉÔ ÍÏÝÎÏÓÔÉ A.
§7. æÕÎËÃÉÉ                                                             33

    æÕÎËÃÉÑ f : A → B ÎÁÚÙ×ÁÅÔÓÑ ÉÎßÅËÔÉ×ÎÏÊ, ÉÌÉ ÉÎßÅËÃÉÅÊ, ÉÌÉ ×ÌÏ-
ÖÅÎÉÅÍ, ÅÓÌÉ ÏÎÁ ÐÅÒÅ×ÏÄÉÔ ÒÁÚÎÙÅ ÜÌÅÍÅÎÔÙ × ÒÁÚÎÙÅ, ÔÏ ÅÓÔØ ÅÓÌÉ f (a1) 6=
6= f (a2) ÐÒÉ ÒÁÚÌÉÞÎÙÈ a1 É a2 .
    æÕÎËÃÉÑ f : A → B ÎÁÚÙ×ÁÅÔÓÑ ÓÀÒßÅËÔÉ×ÎÏÊ, ÉÌÉ ÓÀÒßÅËÃÉÅÊ, ÉÌÉ ÎÁ-
 ÌÏÖÅÎÉÅÍ, ÅÓÌÉ ÍÎÏÖÅÓÔ×Ï Å¾ ÚÎÁÞÅÎÉÊ ÅÓÔØ ×Ó¾ B. (éÎÏÇÄÁ ÔÁËÉÅ ÆÕÎËÃÉÉ
 ÎÁÚÙ×ÁÀÔ ÏÔÏÂÒÁÖÅÎÉÑÍÉ ÎÁ B.)
    üÔÉ Ä×Á ÏÐÒÅÄÅÌÅÎÉÑ ÂÏÌÅÅ ÓÉÍÍÅÔÒÉÞÎÙ, ÞÅÍ ÍÏÖÅÔ ÐÏËÁÚÁÔØÓÑ ÎÁ ÐÅÒ-
 ×ÙÊ ×ÚÇÌÑÄ, ËÁË ÐÏËÁÚÙ×ÁÀÔ ÔÁËÉÅ ÚÁÄÁÞÉ:

    úÁÄÁÞÁ 53. äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎËÃÉÑ f : A → B Ñ×ÌÑÅÔÓÑ ×ÌÏÖÅÎÉÅÍ
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÏÎÁ ÉÍÅÅÔ ÌÅ×ÕÀ ÏÂÒÁÔÎÕÀ ÆÕÎËÃÉÀ g : B →
→ A, ÔÏ ÅÓÔØ ÆÕÎËÃÉÀ g, ÄÌÑ ËÏÔÏÒÏÊ g◦f = idA . äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎËÃÉÑ
f : A → B Ñ×ÌÑÅÔÓÑ ÎÁÌÏÖÅÎÉÅÍ ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÏÎÁ ÉÍÅÅÔ
ÐÒÁ×ÕÀ ÏÂÒÁÔÎÕÀ ÆÕÎËÃÉÀ g : B → A, ÄÌÑ ËÏÔÏÒÏÊ f ◦ g = idB .

    úÁÄÁÞÁ 54. äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎËÃÉÑ f : A → B Ñ×ÌÑÅÔÓÑ ×ÌÏÖÅÎÉÅÍ
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÎÁ Ξ ÍÏÖÎÏ ÓÏËÒÁÝÁÔØ ÓÌÅ×Á: ÉÚ ÒÁ×ÅÎ-
ÓÔ×Á f ◦ g1 = f ◦ g2 ÓÌÅÄÕÅÔ ÒÁ×ÅÎÓÔ×Ï g1 = g2 (ÄÌÑ ÌÀÂÙÈ ÆÕÎËÃÉÊ g1 ,
g2 , ÏÂÌÁÓÔÉ ÚÎÁÞÅÎÉÊ ËÏÔÏÒÙÈ ÓÏÄÅÒÖÁÔÓÑ × A). äÏËÁÖÉÔÅ, ÞÔÏ ÆÕÎË-
ÃÉÑ f : A → B Ñ×ÌÑÅÔÓÑ ÎÁÌÏÖÅÎÉÅÍ ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÎÁ Ξ
ÍÏÖÎÏ ÓÏËÒÁÝÁÔØ ÓÐÒÁ×Á: ÉÚ ÒÁ×ÅÎÓÔ×Á g1 ◦ f = g2 ◦ f ÓÌÅÄÕÅÔ ÒÁ×ÅÎÓÔ×Ï
g1 = g2 (ÄÌÑ ÌÀÂÙÈ ÆÕÎËÃÉÊ g1 , g2, ÏÂÌÁÓÔØ ÏÐÒÅÄÅÌÅÎÉÑ ËÏÔÏÒÙÈ ÅÓÔØ B).

   ïÔÏÂÒÁÖÅÎÉÅ (ÆÕÎËÃÉÑ) f : A → B, ËÏÔÏÒÏÅ ÏÄÎÏ×ÒÅÍÅÎÎÏ Ñ×ÌÑÅÔÓÑ ÉÎß-
ÅËÃÉÅÊ É ÓÀÒßÅËÃÉÅÊ (×ÌÏÖÅÎÉÅÍ É ÎÁÌÏÖÅÎÉÅÍ), ÎÁÚÙ×ÁÅÔÓÑ ÂÉÅËÃÉÅÊ, ÉÌÉ
×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÙÍ ÓÏÏÔ×ÅÔÓÔ×ÉÅÍ.
   åÓÌÉ f ¡ ÂÉÅËÃÉÑ, ÔÏ ÓÕÝÅÓÔ×ÕÅÔ ÏÂÒÁÔÎÁÑ ÆÕÎËÃÉÑ f −1, ÄÌÑ ËÏÔÏÒÏÊ
f −1(y) = x ⇔ f (x) = y.

  úÁÄÁÞÁ 55. íÏÇÕÔ ÌÉ ÄÌÑ ÎÅËÏÔÏÒÏÊ ÆÕÎËÃÉÉ ÌÅ×ÁÑ É ÐÒÁ×ÁÑ ÏÂÒÁÔ-
ÎÙÅ ÓÕÝÅÓÔ×Ï×ÁÔØ, ÎÏ ÂÙÔØ ÒÁÚÌÉÞÎÙ?

    îÁÐÏÍÎÉÍ, ÞÔÏ ÍÎÏÖÅÓÔ×Á A É B ÒÁ×ÎÏÍÏÝÎÙ, ÅÓÌÉ ÓÕÝÅÓÔ×ÕÅÔ ÂÉÅËÃÉÑ
f : A → B. ÷ ËÁËÏÍ ÓÌÕÞÁÅ ÓÕÝÅÓÔ×ÕÅÔ ÉÎßÅËÃÉÑ (×ÌÏÖÅÎÉÅ) f : A → B?
ìÅÇËÏ ÐÏÎÑÔØ, ÞÔÏ ×ÌÏÖÅÎÉÅ Ñ×ÌÑÅÔÓÑ ×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÙÍ ÓÏÏÔ×ÅÔÓÔ×ÉÅÍ
ÍÅÖÄÕ A É ÎÅËÏÔÏÒÙÍ ÐÏÄÍÎÏÖÅÓÔ×ÏÍ ÍÎÏÖÅÓÔ×Á B, ÐÏÜÔÏÍÕ ÔÁËÏÅ ×ÌÏÖÅ-
ÎÉÅ ÓÕÝÅÓÔ×ÕÅÔ ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ × B ÅÓÔØ ÐÏÄÍÎÏÖÅÓÔ×Ï, ÒÁ×-
ÎÏÍÏÝÎÏÅ A, Ô. Å. ËÏÇÄÁ ÍÏÝÎÏÓÔØ A ÎÅ ÐÒÅ×ÏÓÈÏÄÉÔ ÍÏÝÎÏÓÔÉ B (× ÓÍÙÓÌÅ
ÏÐÒÅÄÅÌÅÎÉÑ, ÄÁÎÎÏÇÏ × ÒÁÚÄÅÌÅ 5).
    þÕÔØ ÍÅÎÅÅ ÏÞÅ×ÉÄÅÎ ÄÒÕÇÏÊ ÒÅÚÕÌØÔÁÔ: ÎÁÌÏÖÅÎÉÅ A ÎÁ B ÓÕÝÅÓÔ×ÕÅÔ
ÔÏÇÄÁ É ÔÏÌØËÏ ÔÏÇÄÁ, ËÏÇÄÁ ÍÏÝÎÏÓÔØ B ÎÅ ÐÒÅ×ÏÓÈÏÄÉÔ ÍÏÝÎÏÓÔÉ A.