Математическая логика и теория алгоритмов. Самохин А.В. - 79 стр.

UptoLike

Составители: 

Рубрика: 

§3. óÈÅÍÙ ÉÚ ÆÕÎËÃÉÏÎÁÌØÎÙÈ ÜÌÅÍÅÎÔÏ× 79
ôÅÏÒÅÍÁ 28. óÕÝÅÓÔ×ÕÅÔ ÓÈÅÍÁ ÕÍÎÏÖÅÎÉÑ Ä×ÕÈ n-ÒÁÚÒÑÄÎÙÈ ÞÉÓÅÌ
ÒÁÚÍÅÒÁ O(n
2
) É ÇÌÕÂÉÎÙ O(log n).
äÏËÁÚÁÔÅÌØÓÔ×Ï. ëÁË ÍÙ ÕÖÅ ÇÏ×ÏÒÉÌÉ, ÕÍÎÏÖÅÎÉÅ Ä×ÕÈ n-ÒÁÚÒÑÄÎÙÈ ÞÉ-
ÓÅÌ Ó×ÏÄÉÔÓÑ Ë ÓÌÏÖÅÎÉÀ n ÔÁËÉÈ ÞÉÓÅÌ, É ÏÓÔÁ¾ÔÓÑ ×ÙÐÏÌÎÉÔØ ÔÁËÏÅ ÓÌÏÖÅ-
ÎÉÅ ÓÈÅÍÏÊ ÒÁÚÍÅÒÁ O(n
2
) É ÇÌÕÂÉÎÙ O(log n). ëÌÀÞÅ×ÙÍ ÍÏÍÅÎÔÏÍ ÚÄÅÓØ
Ñ×ÌÑÅÔÓÑ Ó×ÅÄÅÎÉÅ ÓÌÏÖÅÎÉÑ ÔÒ¾È ÞÉÓÅÌ Ë ÓÌÏÖÅÎÉÀ Ä×ÕÈ Ó ÐÏÍÏÝØÀ ÐÒÏÓÔÏÊ
ÓÈÅÍÙ ÒÁÚÍÅÒÁ O(n) É ÇÌÕÂÉÎÙ O(1). ÷ ÓÁÍÏÍ ÄÅÌÅ, ÐÕÓÔØ ÅÓÔØ ÔÒÉ ÞÉÓÌÁ x,
y É z. åÓÌÉ ÍÙ ÂÕÄÅÍ ÓËÌÁÄÙ×ÁÔØ ÏÔÄÅÌØÎÏ × ËÁÖÄÏÍ ÒÁÚÒÑÄÅ, ÔÏ × ÒÁÚÒÑÄÅ
ÍÏÖÅÔ ÎÁËÏÐÉÔØÓÑ ÌÀÂÁÑ ÓÕÍÍÁ ÏÔ 0 ÄÏ 3, ÔÏ ÅÓÔØ × Ä×ÏÉÞÎÏÊ ÚÁÐÉÓÉ ÏÔ 00
ÄÏ 11. óÆÏÒÍÉÒÕÅÍ ÉÚ ÍÌÁÄÛÉÈ ÂÉÔÏ× ÜÔÉÈ Ä×ÕÈÂÉÔÏ×ÙÈ ÓÕÍÍ ÞÉÓÌÏ u, Á ÉÚ
ÓÔÁÒÛÉÈ (ÓÄ×ÉÎÕÔÙÈ ×ÌÅ×Ï) ¡ ÞÉÓÌÏ v. ôÏÇÄÁ, ÏÞÅ×ÉÄÎÏ, x + y + z = u + v.
ðÏÌÕÞÅÎÉÅ ÃÉÆÒ ÞÉÓÌÁ u É v ÐÒÏÉÓÈÏÄÉÔ ÐÁÒÁÌÌÅÌØÎÏ ×Ï ×ÓÅÈ ÒÁÚÒÑÄÁÈ É
ÔÒÅÂÕÅÔ ÒÁÚÍÅÒÁ O(n) É ÇÌÕÂÉÎÙ O(1).
ôÅÐÅÒØ, ÅÓÌÉ ÎÁÄÏ ÓÌÏÖÉÔØ n ÞÉÓÅÌ, ÍÏÖÎÏ ÒÁÚÂÉÔØ ÉÈ ÎÁ ÔÒÏÊËÉ É ÉÚ
ËÁÖÄÙÈ ÔÒ¾È ÞÉÓÅÌ ÐÏÌÕÞÉÔØ ÐÏ Ä×Á. ÷ ÓÌÅÄÕÀÝÉÊ ËÒÕÇ, ÔÁËÉÍ ÏÂÒÁÚÏÍ,
×ÙÊÄÕÔ (2/3)n ÞÉÓÅÌ (ÐÒÉÍÅÒÎÏ ¡ ÇÒÁÎÉÞÎÙÅ ÜÆÆÅËÔÙ ÂÏÌØÛÏÊ ÒÏÌÉ ÎÅ
ÉÇÒÁÀÔ). éÈ ÓÎÏ×Á ÍÏÖÎÏ ÓÇÒÕÐÐÉÒÏ×ÁÔØ ÐÏ ÔÒÏÊËÁÍ É Ô. Ä. ó ËÁÖÄÙÍ ÕÒÏ×-
ÎÅÍ ÞÉÓÌÏ ÓÌÁÇÁÅÍÙÈ ÕÂÙ×ÁÅÔ × ÐÏÌÔÏÒÁ ÒÁÚÁ, ÔÁË ÞÔÏ ÇÌÕÂÉÎÁ ÓÈÅÍÙ ÂÕÄÅÔ
ÌÏÇÁÒÉÆÍÉÞÅÓËÏÊ. ëÁÖÄÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ ÔÒ¾È ÓÌÁÇÁÅÍÙÈ × Ä×Á ÔÒÅÂÕÅÔ
ÓÈÅÍÙ ÒÁÚÍÅÒÁ O(n) É ÕÍÅÎØÛÁÅÔ ÞÉÓÌÏ ÓÌÁÇÁÅÍÙÈ ÎÁ ÅÄÉÎÉÃÕ, ÔÁË ÞÔÏ
ÐÏÔÒÅÂÕÅÔÓÑ n ÔÁËÉÈ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÊ. éÔÁË, ÜÔÁ ËÏÎÓÔÒÕËÃÉÑ ÉÍÅÅÔ ÏÂÝÉÊ
ÒÁÚÍÅÒ O(n
2
) É ÇÌÕÂÉÎÕ O(log n). îÁÄÏ ÔÏÌØËÏ ÏÔÍÅÔÉÔØ, ÞÔÏ × ËÏÎÃÅ Õ ÎÁÓ
ÐÏÌÕÞÁÅÔÓÑ ÎÅ ÏÄÎÏ ÞÉÓÌÏ, Á Ä×Á, É ÉÈ ÎÁÐÏÓÌÅÄÏË ÎÁÄÏ ÓÌÏÖÉÔØ ¡ ÞÔÏ ÍÙ
ÕÍÅÅÍ ÄÅÌÁÔØ Ó ÇÌÕÂÉÎÏÊ O(log n) É ÒÁÚÍÅÒÏÍ O(n).
úÁÄÁÞÁ 116. äÏËÁÖÉÔÅ, ÞÔÏ ÓÈÅÍÁ, ×ÙÞÉÓÌÑÀÝÁÑ ÂÕÌÅ×Õ ÆÕÎËÃÉÀ f
ÏÔ n ÁÒÇÕÍÅÎÔÏ×, Õ ËÏÔÏÒÏÊ ÎÉ ÏÄÉÎ ÁÒÇÕÍÅÎÔ ÎÅ Ñ×ÌÑÅÔÓÑ ÆÉËÔÉ×ÎÙÍ,
ÉÍÅÅÔ ÒÁÚÍÅÒ ÎÅ ÍÅÎÅÅ cn É ÇÌÕÂÉÎÕ ÎÅ ÍÅÎÅÅ c log n, ÇÄÅ c > 0 ¡ ÎÅËÏÔÏ-
ÒÁÑ ËÏÎÓÔÁÎÔÁ, ÚÁ×ÉÓÑÝÁÑ ÏÔ ×ÙÂÒÁÎÎÏÇÏ ÎÁÂÏÒÁ ÜÌÅÍÅÎÔÏ×. (áÒÇÕÍÅÎÔ
ÆÕÎËÃÉÉ ÎÁÚÙ×ÁÀÔ ÆÉËÔÉ×ÎÙÍ, ÅÓÌÉ ÏÔ ÎÅÇÏ ÚÎÁÞÅÎÉÅ ÆÕÎËÃÉÉ ÎÅ ÚÁ×É-
ÓÉÔ.)
üÔÁ ÚÁÄÁÞÁ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÅÓÌÉ × ÐÒÏÃÅÓÓÅ ÕÍÎÏÖÅÎÉÑ Ä×ÕÈ n-ÒÁÚÒÑÄ-
ÎÙÈ ÞÉÓÅÌ ÍÙ ÓÕÍÍÉÒÕÅÍ n ÓÌÁÇÁÅÍÙÈ ÒÁÚÍÅÒÁ n, ÔÏ ÏÃÅÎËÉ O(n
2
) ÄÌÑ ÒÁÚ-
ÍÅÒÁ É O(log n) ÄÌÑ ÇÌÕÂÉÎÙ, ÐÏÌÕÞÅÎÎÙÅ ÐÒÉ ÄÏËÁÚÁÔÅÌØÓÔ×Å ÔÅÏÒÅÍÙ 28,
ÓÕÝÅÓÔ×ÅÎÎÏ ÕÌÕÞÛÉÔØ ÎÅÌØÚÑ.
ïÄÎÁËÏ ÎÉËÔÏ ÎÅ ÏÂÑÚÙ×ÁÅÔ ÎÁÓ ÓÌÅÄÏ×ÁÔØ ÔÒÁÄÉÃÉÏÎÎÏÍÕ ÓÐÏÓÏÂÕ ÕÍÎÏ-
ÖÅÎÉÑ ÓÔÏÌÂÉËÏÍ ¡ ÏÔËÁÚÁ×ÛÉÓØ ÏÔ ÎÅÇÏ, ÍÙ ÍÏÖÅÍ ÕÍÅÎØÛÉÔØ ÒÁÚÍÅÒ
ÓÈÅÍÙ.
§3. óÈÅÍÙ ÉÚ ÆÕÎËÃÉÏÎÁÌØÎÙÈ ÜÌÅÍÅÎÔÏ×                                 79

   ôÅÏÒÅÍÁ 28. óÕÝÅÓÔ×ÕÅÔ ÓÈÅÍÁ ÕÍÎÏÖÅÎÉÑ Ä×ÕÈ n-ÒÁÚÒÑÄÎÙÈ ÞÉÓÅÌ
ÒÁÚÍÅÒÁ O(n2 ) É ÇÌÕÂÉÎÙ O(log n).

   äÏËÁÚÁÔÅÌØÓÔ×Ï. ëÁË ÍÙ ÕÖÅ ÇÏ×ÏÒÉÌÉ, ÕÍÎÏÖÅÎÉÅ Ä×ÕÈ n-ÒÁÚÒÑÄÎÙÈ ÞÉ-
ÓÅÌ Ó×ÏÄÉÔÓÑ Ë ÓÌÏÖÅÎÉÀ n ÔÁËÉÈ ÞÉÓÅÌ, É ÏÓÔÁ¾ÔÓÑ ×ÙÐÏÌÎÉÔØ ÔÁËÏÅ ÓÌÏÖÅ-
ÎÉÅ ÓÈÅÍÏÊ ÒÁÚÍÅÒÁ O(n2) É ÇÌÕÂÉÎÙ O(log n). ëÌÀÞÅ×ÙÍ ÍÏÍÅÎÔÏÍ ÚÄÅÓØ
Ñ×ÌÑÅÔÓÑ Ó×ÅÄÅÎÉÅ ÓÌÏÖÅÎÉÑ ÔÒ¾È ÞÉÓÅÌ Ë ÓÌÏÖÅÎÉÀ Ä×ÕÈ Ó ÐÏÍÏÝØÀ ÐÒÏÓÔÏÊ
ÓÈÅÍÙ ÒÁÚÍÅÒÁ O(n) É ÇÌÕÂÉÎÙ O(1). ÷ ÓÁÍÏÍ ÄÅÌÅ, ÐÕÓÔØ ÅÓÔØ ÔÒÉ ÞÉÓÌÁ x,
y É z. åÓÌÉ ÍÙ ÂÕÄÅÍ ÓËÌÁÄÙ×ÁÔØ ÏÔÄÅÌØÎÏ × ËÁÖÄÏÍ ÒÁÚÒÑÄÅ, ÔÏ × ÒÁÚÒÑÄÅ
ÍÏÖÅÔ ÎÁËÏÐÉÔØÓÑ ÌÀÂÁÑ ÓÕÍÍÁ ÏÔ 0 ÄÏ 3, ÔÏ ÅÓÔØ × Ä×ÏÉÞÎÏÊ ÚÁÐÉÓÉ ÏÔ 00
ÄÏ 11. óÆÏÒÍÉÒÕÅÍ ÉÚ ÍÌÁÄÛÉÈ ÂÉÔÏ× ÜÔÉÈ Ä×ÕÈÂÉÔÏ×ÙÈ ÓÕÍÍ ÞÉÓÌÏ u, Á ÉÚ
ÓÔÁÒÛÉÈ (ÓÄ×ÉÎÕÔÙÈ ×ÌÅ×Ï) ¡ ÞÉÓÌÏ v. ôÏÇÄÁ, ÏÞÅ×ÉÄÎÏ, x + y + z = u + v.
ðÏÌÕÞÅÎÉÅ ÃÉÆÒ ÞÉÓÌÁ u É v ÐÒÏÉÓÈÏÄÉÔ ÐÁÒÁÌÌÅÌØÎÏ ×Ï ×ÓÅÈ ÒÁÚÒÑÄÁÈ É
ÔÒÅÂÕÅÔ ÒÁÚÍÅÒÁ O(n) É ÇÌÕÂÉÎÙ O(1).
   ôÅÐÅÒØ, ÅÓÌÉ ÎÁÄÏ ÓÌÏÖÉÔØ n ÞÉÓÅÌ, ÍÏÖÎÏ ÒÁÚÂÉÔØ ÉÈ ÎÁ ÔÒÏÊËÉ É ÉÚ
ËÁÖÄÙÈ ÔÒ¾È ÞÉÓÅÌ ÐÏÌÕÞÉÔØ ÐÏ Ä×Á. ÷ ÓÌÅÄÕÀÝÉÊ ËÒÕÇ, ÔÁËÉÍ ÏÂÒÁÚÏÍ,
×ÙÊÄÕÔ (2/3)n ÞÉÓÅÌ (ÐÒÉÍÅÒÎÏ ¡ ÇÒÁÎÉÞÎÙÅ ÜÆÆÅËÔÙ ÂÏÌØÛÏÊ ÒÏÌÉ ÎÅ
ÉÇÒÁÀÔ). éÈ ÓÎÏ×Á ÍÏÖÎÏ ÓÇÒÕÐÐÉÒÏ×ÁÔØ ÐÏ ÔÒÏÊËÁÍ É Ô. Ä. ó ËÁÖÄÙÍ ÕÒÏ×-
ÎÅÍ ÞÉÓÌÏ ÓÌÁÇÁÅÍÙÈ ÕÂÙ×ÁÅÔ × ÐÏÌÔÏÒÁ ÒÁÚÁ, ÔÁË ÞÔÏ ÇÌÕÂÉÎÁ ÓÈÅÍÙ ÂÕÄÅÔ
ÌÏÇÁÒÉÆÍÉÞÅÓËÏÊ. ëÁÖÄÏÅ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÅ ÔÒ¾È ÓÌÁÇÁÅÍÙÈ × Ä×Á ÔÒÅÂÕÅÔ
ÓÈÅÍÙ ÒÁÚÍÅÒÁ O(n) É ÕÍÅÎØÛÁÅÔ ÞÉÓÌÏ ÓÌÁÇÁÅÍÙÈ ÎÁ ÅÄÉÎÉÃÕ, ÔÁË ÞÔÏ
ÐÏÔÒÅÂÕÅÔÓÑ n ÔÁËÉÈ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÊ. éÔÁË, ÜÔÁ ËÏÎÓÔÒÕËÃÉÑ ÉÍÅÅÔ ÏÂÝÉÊ
ÒÁÚÍÅÒ O(n2 ) É ÇÌÕÂÉÎÕ O(log n). îÁÄÏ ÔÏÌØËÏ ÏÔÍÅÔÉÔØ, ÞÔÏ × ËÏÎÃÅ Õ ÎÁÓ
ÐÏÌÕÞÁÅÔÓÑ ÎÅ ÏÄÎÏ ÞÉÓÌÏ, Á Ä×Á, É ÉÈ ÎÁÐÏÓÌÅÄÏË ÎÁÄÏ ÓÌÏÖÉÔØ ¡ ÞÔÏ ÍÙ
ÕÍÅÅÍ ÄÅÌÁÔØ Ó ÇÌÕÂÉÎÏÊ O(log n) É ÒÁÚÍÅÒÏÍ O(n).

  úÁÄÁÞÁ 116. äÏËÁÖÉÔÅ, ÞÔÏ ÓÈÅÍÁ, ×ÙÞÉÓÌÑÀÝÁÑ ÂÕÌÅ×Õ ÆÕÎËÃÉÀ f
ÏÔ n ÁÒÇÕÍÅÎÔÏ×, Õ ËÏÔÏÒÏÊ ÎÉ ÏÄÉÎ ÁÒÇÕÍÅÎÔ ÎÅ Ñ×ÌÑÅÔÓÑ ÆÉËÔÉ×ÎÙÍ,
ÉÍÅÅÔ ÒÁÚÍÅÒ ÎÅ ÍÅÎÅÅ cn É ÇÌÕÂÉÎÕ ÎÅ ÍÅÎÅÅ c log n, ÇÄÅ c > 0 ¡ ÎÅËÏÔÏ-
ÒÁÑ ËÏÎÓÔÁÎÔÁ, ÚÁ×ÉÓÑÝÁÑ ÏÔ ×ÙÂÒÁÎÎÏÇÏ ÎÁÂÏÒÁ ÜÌÅÍÅÎÔÏ×. (áÒÇÕÍÅÎÔ
ÆÕÎËÃÉÉ ÎÁÚÙ×ÁÀÔ ÆÉËÔÉ×ÎÙÍ, ÅÓÌÉ ÏÔ ÎÅÇÏ ÚÎÁÞÅÎÉÅ ÆÕÎËÃÉÉ ÎÅ ÚÁ×É-
ÓÉÔ.)

   üÔÁ ÚÁÄÁÞÁ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÅÓÌÉ × ÐÒÏÃÅÓÓÅ ÕÍÎÏÖÅÎÉÑ Ä×ÕÈ n-ÒÁÚÒÑÄ-
ÎÙÈ ÞÉÓÅÌ ÍÙ ÓÕÍÍÉÒÕÅÍ n ÓÌÁÇÁÅÍÙÈ ÒÁÚÍÅÒÁ n, ÔÏ ÏÃÅÎËÉ O(n2 ) ÄÌÑ ÒÁÚ-
ÍÅÒÁ É O(log n) ÄÌÑ ÇÌÕÂÉÎÙ, ÐÏÌÕÞÅÎÎÙÅ ÐÒÉ ÄÏËÁÚÁÔÅÌØÓÔ×Å ÔÅÏÒÅÍÙ 28,
ÓÕÝÅÓÔ×ÅÎÎÏ ÕÌÕÞÛÉÔØ ÎÅÌØÚÑ.
   ïÄÎÁËÏ ÎÉËÔÏ ÎÅ ÏÂÑÚÙ×ÁÅÔ ÎÁÓ ÓÌÅÄÏ×ÁÔØ ÔÒÁÄÉÃÉÏÎÎÏÍÕ ÓÐÏÓÏÂÕ ÕÍÎÏ-
ÖÅÎÉÑ ÓÔÏÌÂÉËÏÍ ¡ ÏÔËÁÚÁ×ÛÉÓØ ÏÔ ÎÅÇÏ, ÍÙ ÍÏÖÅÍ ÕÍÅÎØÛÉÔØ ÒÁÚÍÅÒ
ÓÈÅÍÙ.