Сборник задач по высшей математике. Часть IV. Интегралы. Дифференциальные уравнения. Самохин А.В - 45 стр.

UptoLike

Рубрика: 

§2. ïÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ, ÏÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á. . . 45
ÒÁÓÓÍÏÔÒÉÍ ÐÏÄÓÔÁÎÏ×ËÕ x =
1
cos t
, ÔÁË ËÁË x [1, 2], ÔÏ t
0;
π
3
.
2
Z
1
x
2
1
x
4
dx =
π/3
Z
0
q
1
cos
2
t
1
1/ cos
4
t
·
sin t
cos
2
t
dt =
π/3
Z
0
sin
2
t ·cos t dt =
sin
3
t
3
π/3
0
=
3
8
.
ðÒÉÍÅÒ 5. (ÓÍ. Ó×ÏÊÓÔ×Ï 5).
1
Z
0
arctg x dx = x · arctg x
1
0
1
Z
0
x dx
1 + x
2
= x arctg x
1
0
1
2
ln |1 + x
2
|
1
0
=
π
4
1
2
(ln 2 ln 1) =
π
4
ln 2
2
.
2.2. çÅÏÍÅÔÒÉÞÅÓËÉÅ ÐÒÉÌÏÖÅÎÉÑ ÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ
I. äÌÉÎÁ ËÒÉ×ÏÊ.
I.1. ëÒÉ×ÁÑ ÚÁÄÁÎÁ Ñ×ÎÙÍ ÕÒÁ×ÎÅÎÉÅÍ y = f (x), x [a, b], ÔÏÇÄÁ ÄÌÉÎÁ
ËÒÉ×ÏÊ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏ ÆÏÒÍÕÌÅ:
l =
b
Z
a
p
1 + [f
0
(x)]
2
dx.
ðÒÉÍÅÒ 6. îÁÊÔÉ ÄÌÉÎÕ ËÒÉ×ÏÊ y =
x
2
6
ÎÁ ÕÞÁÓÔËÅ x [0, 4].
y
0
=
x
2
6
0
=
x
3
l =
4
Z
0
r
1 +
x
3
2
dx =
1
3
4
Z
0
p
3
2
+ x
2
dx =
=
1
3
1
2
x
p
3
2
+ x
2
+
9
2
ln(x +
p
3
2
+ x
2
)
4
0
=
=
1
3
1
2
4 ·
p
3
2
+ 4
2
+
9
2
ln(4 +
p
3
2
+ 4
2
)
1
2
· 0 ·
p
3
2
+ 0
9
2
ln(0 +
p
3
2
+ 0)
=
1
3
·
10 +
9
2
ln 9
9
2
ln 3
=
1
3
10 +
9
2
ln 3
=
10
3
+
3
2
ln 3.
§2. ïÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ, ÏÓÎÏ×ÎÙÅ Ó×ÏÊÓÔ×Á. . .                                       45

ÒÁÓÓÍÏÔÒÉÍ ÐÏÄÓÔÁÎÏ×ËÕ x = cos1 t , ÔÁË ËÁË x ∈ [1, 2], ÔÏ t ∈ 0; π3 .
                                                                       

Z2 √ 2                                                                                √
                    q
               Zπ/3     1
                            − 1              Zπ/3                             π/3
    x −1                 2
                      cos t       sin t             2                sin3 t             3
         dx =                   ·       dt =     sin t · cos t dt =                 =     .
     x4              1/ cos4 t cos2 t                                  3      0        8
1                    0                                0

    ðÒÉÍÅÒ 5. (ÓÍ. Ó×ÏÊÓÔ×Ï 5).
    Z1                         1      Z1                    1
                                            x dx
         arctg x dx = x · arctg x −               = x arctg x −
                               0           1 + x2            0
    0                                 0
                                                  1
                                1              π 1               π ln 2
                               − ln |1 + x2 | = − (ln 2 − ln 1) = −     .
                                2            0 4 2               4  2

2.2. çÅÏÍÅÔÒÉÞÅÓËÉÅ ÐÒÉÌÏÖÅÎÉÑ ÏÐÒÅÄÅÌÅÎÎÏÇÏ ÉÎÔÅÇÒÁÌÁ

  I. äÌÉÎÁ ËÒÉ×ÏÊ.
  I.1. ëÒÉ×ÁÑ ÚÁÄÁÎÁ Ñ×ÎÙÍ ÕÒÁ×ÎÅÎÉÅÍ y = f (x), x ∈ [a, b], ÔÏÇÄÁ ÄÌÉÎÁ
ËÒÉ×ÏÊ ×ÙÞÉÓÌÑÅÔÓÑ ÐÏ ÆÏÒÍÕÌÅ:
                                  Zb p
                               l=     1 + [f 0(x)]2 dx.
                                      a
                                                   2
    ðÒÉÍÅÒ 6. îÁÊÔÉ ÄÌÉÎÕ ËÒÉ×ÏÊ y = x6 ÎÁ ÕÞÁÓÔËÅ x ∈ [0, 4].
                                     2 0
                               0     x          x
                              y =            =
                                      6         3
                   Z4 r       x 2          Z4
                                           1 p 2
               l=       1+          dx =            3 + x2 dx =
                               3           3
                   0                         0
                   p                                       4
                1 1                  9           p
              =       x 32 + x2 + ln(x + 32 + x2 )             =
                3 2                  2                       0
                   
                 1 1      p              9          p
               =       4 · 32 + 42 + ln(4 + 32 + 42)−
                 3 2                     2
                                                        
          1    p           9          p                1        9
        − · 0 · 32 + 0 − ln(0 + 32 + 0) = · 10 + ln 9−
          2                2                           3        2
                                            
                 9          1          9            10 3
               − ln 3 =          10 + ln 3 =           + ln 3.
                 2          3          2             3   2