ВУЗ:
Составители:
Рубрика:
27
Рис.8
(
)
EnP
10
α
α
+= (37)
где
n
– число участвующих в поляризации частиц в 1
3
см
E
– напряжённость поля, действующего на молекулу;
0
α
– поляризуемость смещения, не зависящая от температуры;
1
α
– поляризуемость, зависящая от температуры.
В свою очередь,
µ
α
α
α
α
++=
ie0
, где
e
α
– поляризуемость элек-
тронного смещения,
i
α
– поляризуемость ионного смещения и
µ
α
– поля-
ризуемость, обусловленная смещением упруго связанных диполей. Для ди-
электриков, не содержащих сильно связанных полярных молекул, 0=
µ
α
и
ie
α
α
α
+=
0
. Величина
1
α
может быть либо эквивалентной поляризуемо-
стью дипольной ориентации, либо эквивалентной поляризуемостью, ха-
рактеризующей тепловую ионную поляризацию.
В общем случае число слабо связанных частиц, участвующих в по-
ляризации
1
n зависящей от теплового движения, меньше, чем число час-
тиц, подверженных поляризации смещения
0
n . Поэтому
(
)
EnnP
1100
α
α
+= (37а)
Перейдём теперь к весьма существенному вопросу о том, как связана
диэлектрическая проницаемость диэлектрика с электрическим моментом
единицы объёма
P
, а следовательно, и с молекулярными величинами – по-
ляризуемостями.
Действующее поле в диэлектрике
Связь между диэлектрической проницаемостью и поляризуемостью
для газов, неполярных жидкостей и кубических кристаллов
В предыдущих параграфах были рассмотрены процессы, обуслов-
ливающие возникновение поляризации диэлектрика, находящегося в элек-
трическом поле. Каждый отдельный вид поляризации был охарактеризован
некоторой молекулярной константой, названной поляризуемостью. При
этом величина поляризуемости была связана с другими молекулярными
константами диэлектрика для простейших, видов поляризации.
В этом параграфе необходимо решить
задачу о том, как связать макроскопические
параметры, характеризующие поляризованный
диэлектрик с молекулярными константами (в
частности, с поляризуемостью).
Согласно выше изложенному, каждая
единица объёма диэлектрика под действием
поля приобретает электрический момент
P
.
Электрический момент всего диэлектрика
можно найти, если диэлектрик однороден и
PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
P = n(α 0 + α 1 )E (37)
где n – число участвующих в поляризации частиц в 1 см 3
E – напряжённость поля, действующего на молекулу;
α 0 – поляризуемость смещения, не зависящая от температуры;
α 1 – поляризуемость, зависящая от температуры.
В свою очередь, α 0 = α e + α i + α µ , где α e – поляризуемость элек-
тронного смещения, α i – поляризуемость ионного смещения и α µ – поля-
ризуемость, обусловленная смещением упруго связанных диполей. Для ди-
электриков, не содержащих сильно связанных полярных молекул, α µ = 0 и
α 0 = α e + α i . Величина α 1 может быть либо эквивалентной поляризуемо-
стью дипольной ориентации, либо эквивалентной поляризуемостью, ха-
рактеризующей тепловую ионную поляризацию.
В общем случае число слабо связанных частиц, участвующих в по-
ляризации n1 зависящей от теплового движения, меньше, чем число час-
тиц, подверженных поляризации смещения n0 . Поэтому
P = (n0α 0 + n1α 1 )E (37а)
Перейдём теперь к весьма существенному вопросу о том, как связана
диэлектрическая проницаемость диэлектрика с электрическим моментом
единицы объёма P , а следовательно, и с молекулярными величинами – по-
ляризуемостями.
Действующее поле в диэлектрике
Связь между диэлектрической проницаемостью и поляризуемостью
для газов, неполярных жидкостей и кубических кристаллов
В предыдущих параграфах были рассмотрены процессы, обуслов-
ливающие возникновение поляризации диэлектрика, находящегося в элек-
трическом поле. Каждый отдельный вид поляризации был охарактеризован
некоторой молекулярной константой, названной поляризуемостью. При
этом величина поляризуемости была связана с другими молекулярными
константами диэлектрика для простейших, видов поляризации.
В этом параграфе необходимо решить
задачу о том, как связать макроскопические
параметры, характеризующие поляризованный
диэлектрик с молекулярными константами (в
частности, с поляризуемостью).
Согласно выше изложенному, каждая
единица объёма диэлектрика под действием
поля приобретает электрический момент P .
Рис.8 Электрический момент всего диэлектрика
можно найти, если диэлектрик однороден и
27
PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com
Страницы
- « первая
- ‹ предыдущая
- …
- 25
- 26
- 27
- 28
- 29
- …
- следующая ›
- последняя »
