ВУЗ:
Составители:
ˆx(t
−
k+1
) = Φˆx(t
+
k
)
ˆx(t
+
0
) = ¯x
0
P (t
−
k+1
) = ΦP (t
+
k
)Φ
T
+ G
d
Q
d
G
T
d
P (t
+
0
) = P
0
k = 0, 1, . . .
ˆx(t
+
k
) = ˆx(t
−
k
) + K(t
k
)[z(t
k
) − H ˆx(t
−
k
)]
P (t
+
k
) = P (t
−
k
) − K(t
k
)HP (t
−
k
)
K(t
k
) = P (t
−
k
)H[HP (t
−
k
)H
T
+ R]
−1
F, G, Q, R, τ; σ
2
ω
.
¯x
0
=
¯x
0
¯c
x
P
0
=
p
0
11
p
0
12
p
0
12
p
0
22
.