ВУЗ:
Рубрика:
rIS. 7. rANDOMIZIROWANNYJ KOWER sERPINSKOGO W SMYSLE SHODIMOSTI W METRIKE hAUSDORFA. eSLI PREDEL SU]ESTWUET, TO MNOVESTWO E NAZYWA@T ATTRAKTOROM sif. pRI^EM ATTRAKTOR ^ASTO (NO NE WSEGDA!) OKAZYWAETSQ FRAKTALXNYM MNOVESTWOM. 1) pOSTROJTE sif DLQ KANTOROWA MNOVESTWA (RIS. 6 NA S. 11), TRI- ADNOJ KRIWOJ kOHA (RIS. 2 NA S. 6) I KOWRA sERPINSKOGO (RIS. 3 NA S. 7). wY^ISLITE RAZMERNOSTI PODOBIQ \TIH MNOVESTW. kAK SWQZANA RAZMER- NOSTX PODOBIQ S KO\FFICIENTAMI SVATIJ? 2) dETERMINIROWANNYJ ALGORITM POSTROENIQ sif SOSTOIT W NEPO- SREDSTWENNOM PRIMENENII SOWOKUPNOSTI SVIMA@]IH OTOBRAVENIJ K PROIZWOLXNOMU KOMPAKTNOMU MNOVESTWU (WOZMOVNO DAVE K EDINSTWEN- NOJ TO^KE). iSPOLXZUQ PAKET PROGRAMM Mathematica 4.0, ZAPROGRAMMI- ROWATX DETERMINIROWANNYJ ALGORITM DLQ sif I POSTROITX RAZLI^NYE FRAKTALXNYE MNOVESTWA. 3) tEM ILI INYM SPOSOBOM WWEDITE \LEMENT SLU^AJNOSTI W sif. nA- PRIMER, W SLU^AE KOWRA sERPINSKOGO, PRI POSTROENII KOTOROGO OBY^NO UDALQETSQ SREDNQQ IZ ^ETYREH TREUGOLXNYH OBLASTEJ (RIS. 3 NA S. 7), 14
Страницы
- « первая
- ‹ предыдущая
- …
- 13
- 14
- 15
- 16
- 17
- …
- следующая ›
- последняя »