Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 13 стр.

UptoLike

Составители: 

α
1
(π
0
k
) 6=
M
0
α
1
(π
0
k
)
α
1
(π
0
k
) =
= {M
0
, bα
1
(L
0
k
)}
α
1
(A
0
m
) = A
n
M
0
α(A
n
) α
1
(M
0
) A
n
α : A
n
A
0
m
β : A
0
m
A
00
k
β α : A
n
A
00
k
[
β α =
b
β bα
α : A
n
A
0
m
α (
A
0
m
α : A
n
A
0
m
bα : V
n
V
0
m
V
0
m
n = m α
1
: A
0
m
A
n
h : A
n
3 M 7→ {x
i
M
} R
n
M
{O; e
i
} A
n
α : A
n
A
0
m
{O; e
i
} A
n
M A
n
r
M
=
OM = x
i
e
i
O
0
= α(O) M
0
= α(M)
O
0
M
0
= bα(
OM) = bα(x
i
e
i
) = x
i
bα(e
i
).
O
e
2
e
3
e
1
α
O
0
bα(e
1
)
bα(e
3
)
bα(e
2
)
M
0
= α(M)
O
0
= α(O) x
i
e
0
i
e
0
i
= bα(e
i
)
α {e
0
i
} V
0
n
   £—™œ¤œšY[¥˜š›—^ /60 α−1(π0 ) 6= ∅ 0 M ∈ α−1(π0 )  7- α−1(π0 ) =
                                    k              0             k           k
        b (L )} < 
= {M0 , α −1  0
   7:*70: )k 5/7,A* /62)50 ¨7-9- .3*D6-“*,08~ Š‹ α−1(A0 ) = A 
G‹ */60                                       .6-/1-/7>
        M 0 ∈ α(An )  7- α−1 (M 0 ) ⊂ An F
                                                                       m        n
                                                         <
   ŽXYZ[—¡Y\]Y^ ž}hi‚ α : A → A0 a β : A0 → A00 Ÿ j``abbcm gig|p
fjymbat € ¢gxnj vgdegla†at β ◦ α : An → A00k Ÿ j``abbgm             gig|fjymbam€
                                 n       m           m       k


   £—™œ¤œšY[¥˜š›—^ )*B0D,-  β[                b<
                                     ◦ α = βb ◦ α
   VWXYZY[Y\]Y^ _``abbgm gig|fjymbam α : A → A0 bjlckjmiht algp
dgf`aldgd j``abbcr efghifjbhikw mhoa α Ÿ |amv†at ( kljadbg gnbgp
                                                       n       m


lbjsbgm gig|fjymbam bj khm efghifjbhikg A0m ‹ €
   /60 α : A → A0 F 0E-:-3„0E: 7- αb : V → V0 F BE50:,- -D,-E,5)
,-* -7-+35“*,0* ,5mB/* .3-/735,/7B- Vm0  7- */7> 0E-:-3
              n                                    n       m
                                                                   „0E: B*17-3,AC
.3-/735,/7B < 7/‡D5 /6*D2*7 )7- n = m < ¨7-: /62)5* α−1 : A0m → An
F 7-“* 0E-:-3„0E: 5„„0,,AC .3-/735,/7B < )5/7,-/70  /--7B*7/7B0*
                                               )
h : An 3 M 7→ {xiM } ∈ Rn  -7,-/8ˆ** 7- 1* M ,5+-3 ** 1--3D0,57 -7,-
/07*6>,- 3*.*35 {O; ei} B An  F 0E-:-3„0E: 5„„0,,AC .3-/735,/7B <
   ӝ]\\Y —š—­Xœ¡Y\]® › ™——XZ]\œšœ×^ ’2/7> α : A → A0 F 5„„0,
,-* -7-+35“*,0*  {O; ei} F 3*.*3 B An < /8158 7-)15 M ∈ An -.3*D*68*7/8
                                                               n      m


/B-0: 35D02/ B*17-3-: rM = −    OM = xi ei < ’2/7> O0 = α(O) 0 M 0 = α(M ) <
                                  −→
:**:~
                    −−0−→0   −−→
                    OM =α           b(xi ei ) = xi α
                           b(OM ) = α              b(ei ).

               e3
                                                  α
                                                  b(e3 )
                                α
           O                                                  α
                                                              b(e2 )
                    e2
                                                   O0          α
                                                               b(e1 )
      e1

    510: -+35E-: D68 7-9-  )7-+A .-62)07> 7-)12 M 0 = α(M )  ,5D- -7
6-“07> -7 7-)10 O0 = α(O) B*17-3 xie0i  9D* e0i = αb(ei) <
     )5/7,-: /62)5*  1-9D5 α F 0E-:-3„0E: {e0 } F +5E0/ B V0 < 3*E26>
757* .-62)5*: /6*D2‡ˆ**
                                                  i          n




                                        ©