Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 15 стр.

UptoLike

Составители: 

α : A
n
A
n
A
n
A
n
α : A
n
A
n
M A
n
α(M) A
n
{O; e
i
}
{O; e
i
} α
α
y
j
= α
j
i
x
i
+ b
j
, det (α
j
i
) 6= 0.
GA(A
n
) A
n
α :
A
n
A
n
M {x
i
}
{O; e
i
} M
0
{x
i
} {O
0
; e
0
i
} O
0
= α(O) e
0
i
= bα(e
i
) = α
j
i
e
j
O
e
1
e
2
O
0
e
0
2
e
0
1
α A
n
M
0
, M
1
, . . . , M
n
M
0
0
, M
0
1
, . . . , M
0
n
M
0
, M
1
, . . . , M
n
M
0
0
, M
0
1
, . . . , M
0
n
M
p
M
0
p
p = 0, 1, . . . , n
α {M
0
;
M
0
M
i
} {M
0
0
;
M
0
0
M
0
i
}
   VWXYZY[Y\]Y^ Ølgdgf`ald α : A → A j``abbgxg efghifjbhikj A
bjlckjmiht j``abbcd efmg|fjlgkjbamd efghifjbhikj An €
                                         n      n                                    n


   „„0,,A* .3*-+35E-B5,08 ,5EAB5‡7 751“* 5„„0,,A:0 DB0“*,08:0
060 .3-/7- DB0“*,08:0  */60 ,* B-E,015*7 DB2/:A/6*,,-/70 •5„„0,,A*
DB0“*,08 :-“,- 35//:5730B57> 0 B *B160D-BAC .3-/735,/7B5C‹<
   ’30 35//:-73*,00 5„„0,,-9- DB0“*,08 α : An → An */7*/7B*,,- 35/
/:5730B57> 1--3D0,57A 7-)*1 M ∈ An 0 0C -+35E-B α(M ) ∈ An -7,-/0
7*6>,- -D,-9- 0 7-9- “* 3*.*35 {O; ei} < E •ŠI‹ /6*D2*7 )7- B 1--3D0,575C 
-.3*D*68*:AC 5„„0,,A: 3*.*3-: {O; ei}  5„„0,,-* DB0“*,0* α E5D5*7/8
235B,*,08:0 α ~
                       y j = αij xi + bj , det (αij ) 6= 0.                       •Š»‹
   @,-“*/7B- GA(A ) B/*C 5„„0,,AC .3*-+35E-B5,0” .3-/735,/7B5 A
-+35E2*7 932..2 -7,-/07*6>,- 1-:.-E0½00 .3*-+35E-B5,0” <
                     n                                                               n


   ªœY«œ\]Y^ /--7B*7/7B00 / 35//:-73*,,A: 35,** /62)5*: 0E-:-3„0E
:5 5„„0,,AC .3-/735,/7B -D,-” 35E:*3,-/70 5„„0,,-* DB0“*,0* α :
                         )
An → An .*3*B-D07 7- 12 M  0:*‡ˆ2‡ 1--3D0,57A {xi } -7,-/07*6>,-
,*1-7-3-9- 3*.*35 {O; ei}  B 7-)12 M 0  0:*‡ˆ2‡ 7510* “* 1--3D0,57A
{xi } -7,-/07*6>,- 3*.*35 {O0 ; e0i }  9D* O0 = α(O)  5 e0i = α
                                                                b(ei ) = αij ej <
                 e2


                                                              O0
             O          e1
                                               e01                     e02

   ªœZœ«œ Ù^ -15E57>  )7- 5„„0,,-* DB0“*,0* α .3-/735,/7B5 A .*3*B-
D07 B/810” ,5+-3 7-)*1 M0, M1, . . . , Mn  ,5C-D8ˆ0C/8 B -+ˆ*: .-6-“*,00 
                                                                          n


B ,5+-3 7-)*1 M00 , M10 , . . . , Mn0  751“* ,5C-D8ˆ0C/8 B -+ˆ*: .-6-“*,00  0
D68 6‡+AC DB2C ,5+-3-B M0, M1, . . . , Mn 0 M00 , M10 , . . . , Mn0 7-)*1  ,5C-D8
ˆ0C/8 B -+ˆ*: .-6-“*,00  /2ˆ*/7B2*7 *D0,/7B*,,-* 5„„0,,-* DB0“*,0* 
.*3*B-D8ˆ** 7-)12 Mp B 7-)12 Mp0 D68 B/*C p = 0, 1, . . . , n <
   ÈYÉY\]Y^ B0“*,0* α .*3*B-D07 3*.*3 {M ; −           −−→ B 3*.*3
                                                                      {M00 ; M00 Mi0 } <
                                                                             −−−→
                                                    0 M0 Mi }


                                           ¼