Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 23 стр.

UptoLike

Составители: 

A
n
A
C
n
V
n
A
n
α(A
n
) A
C
n
A
n
{O; e
k
} A
n
{O
0
; e
0
k
} A
C
n
α : A
n
A
C
n
M (x
k
) {O; e
k
} M
0
{O
0
; e
0
k
}
β : V
n
W
m
C β
C
: V
C
n
W
C
m
β β
C
y
a
= β
a
k
x
k
(β
a
k
)
α : A
n
A
0
m
α
C
: A
C
n
A
0C
m
α α
C
y
a
= α
a
k
x
k
+ b
a
(α
a
k
) b
a
a = 1, . . . , m
n
( )
( )
V
n
V
n
= {x y |x, y V
n
}
· : C (V
n
V
n
) V
n
V
n
,
kmvigfbcm efghifjbhikjw jhhg†aafgkjbbcm hggikmihikmbbg h An a ACn w
tkotmiht vgdeomvha`avj†amu kmvigfbgxg efghifjbhikj Vn €
    žfa zigd bjsjo‚bgm kmqmhikmbbgm j``abbgm efghifjbhikg An gigyp
nmhikotmiht h mxg g|fjlgd α(A ) ⊂ AC €
    )*B0D,-  )7- D68 6‡+-9- 5„„0,,-9-
                                    n      n
                                             .3-/735,/7B5 An /2ˆ*/7B2*7 1-:
.6*1/0„015½08 < 68 ** .-/73-*,08 D-/757-),- BE87> .3-0EB-6>,A* 3*.*3A
{O; ek } B An 0 {O0 ; e0k } B AC 0 BE87> -7-+35“*,0* α : An → ACn  -7,-/8ˆ**
7-)1* M / 1--3D0,575:0 (xk ) -7,-/07*6>,- 3*.*35 {O; ek } 7-)12 M 0  0:*
                               n


‡ˆ2‡ 7510* “* •B*ˆ*/7B*,,A*‹ 1--3D0,57A -7,-/07*6>,- 3*.*35 {O0; e0k } <
    ’*3*C-D 1 1-:.6*1/0„015½00 .-EB-68*7 /)0757>  )7- 1--3D0,57A 7-)*1
B 0E2)5*:-: 5„„0,,-: .3-/735,/7B* :-927 .30,0:57> ,* 7-6>1- B*ˆ*
/7B*,,A*  ,- 0 1-:.6*1/,A* E,5)*,08 <
    ªœY«œ\]Y^ /81-* 60,*”,-* -7-+35“*,0* β : V → W -D,-E,5),-
.3-D-6“5*7/8 D- C 60,*”,-9- -7-+35“*,08 β C : VnC → WmC < 1--3
                                                        n       m


D0,575C -7-+35“*,08 β 0 β C 0:*‡7 -D0, 0 7-7 “* B0D ya = βkaxk  9D*
                                            )            „„
(βka ) F B*ˆ*/7B*,,58 :5730½5 < ,56-90 ,-  B/81-* 5 0,,-* -7-+35“*
,0* α : An → A0m -D,-E,5),- .3-D-6“5*7/8 D- 5„„0,,-9- -7-+35“*,08
α C : ACn → A m<
              0C     1--3D0,575C -7-+35“*,08 α 0 αC 0:*‡7 -D0, 0 7-7 “*
B0D ya = αkaxk + ba  9D* (αka) F B*ˆ*/7B*,,58 :5730½5 5 ba  a = 1, . . . , m F
B*ˆ*/7B*,,A* )0/65<
    VWXYZY[Y\]Y^ ¸ggikmihikamw vgigfgm gibghai vjyngd} n pdmfbgd}
kmqmhikmbbgd} kmvigfbgd} ( j``abbgd}) efghifjbhik} bmvgigf}{ mxg
vgdeomvha`avj†a{w j oabmubgd} ( j``abbgd}) gig|fjymba{ Ÿ mxg efgp
ngoymbamw bjlckjmiht `}bvigfgd vgdeomvha`avj†aa€
    Á2,17-3A 1-:.6*1/0„0½032‡7 /35E2 B/* B*17-3,A* •5„„0,,A*‹ .3-/7
35,/7B5< 68 0C .-/73-*,08 ,2“,- 215E57> ,*1-7-32‡ /75,D537,2‡ /C*:2
1-:.6*1/0„015½00 < ’30B*D*: .30:*3A 7510C „2,17-3-B <
    åæ\™š—X ™—W[Y™˜]]™œâ]] ›Y™š—X\× WX—˜šXœ\˜š›^ 5 .38:-” /2::*
                       Vn ⊕ Vn = {x ⊕ y | x, y ∈ Vn }
BB*D*: -.*35½0‡ 2:,-“*,08 B*17-3-B ,5 1-:.6*1/,A* )0/65
                       · : C ⊗ (Vn ⊕ Vn ) → Vn ⊕ Vn ,
                                       ©©