Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 22 стр.

UptoLike

Составители: 

{z
1
, z
2
} {O, e
1
, e
2
}
Φ
(z
1
)
2
+ (z
2
)
2
= 1 {x
1
, x
2
, x
3
, x
4
}
A
R
4
{O, e
1
, ie
1
, e
2
, ie
2
} Φ
(x
1
)
2
(x
2
)
2
+(x
3
)
2
(x
4
)
2
= 1 x
1
x
2
+x
3
x
4
= 0
n
V
n
(V
C
n
, ϕ)
n
V
C
n
ϕ : V
n
V
C
n
(
) L
C
(im(ϕ)) V
C
n
V
n
im(ϕ) = ϕ(V
n
) V
C
n
{e
k
} V
n
{ϕ(e
k
)
e
k
} V
C
n
e
1
ie
2
e
2
ie
1
V
n
V
C
n
V
n
{e
k
} V
n
{e
0
k
} V
C
n
ϕ : V
n
V
C
n
ϕ(v
k
e
k
) = v
k
e
0
k
n
A
n
(A
C
n
, α) n
A
C
n
α : A
n
A
C
n
(V
C
n
, bα : V
n
V
C
n
) V
n
V
C
n
.6*1/,AC‹ 1--3D0,575C {z1, z2}  -.3*D*68*:AC ,*1-7-3A: 3*.*3-: {O, e1, e2} 
E5D5,- :,-“*/7B- 7-)*1 Φ  1--3D0,57A 1-7-3AC 2D-B6*7B-38‡7 235B,*,0‡
                                       ‹
(z 1 )2 + (z 2 )2 = 1 < •B*ˆ*/7B*,,AC 1--3D0,575C {x1 , x2 , x3 , x4 } B .3-/735,
/7B* AR4  -.3*D*68*:AC 3*.*3-: {O, e1, ie1, e2, ie2}  ¨7- “* :,-“*/7B- Φ
E5D5*7/8 /0/7*:-” 235B,*,0” (x1)2 −(x2)2 +(x3)2 −(x4)2 = 1  x1x2 +x3x4 = 0 <
     VWXYZY[Y\]Y^ ägdeomvha`avj†amu n pdmfbgxg kmqmhikmbbgxg kmvigfbgp
xg efghifjbhikj Vn bjlckjmiht ejfj (VnC, ϕ) w hghigtqjt al n pdmfbgxg
vgdeomvhbgxg kmvigfbgxg efghifjbhikj VC a oabmubgxg gig|fjymbat
                    C ijvgxg sig oabmubjt g|gogsvj h vgdeomvhbcda vg `p
                                                n
ϕ : Vn → Vn                  w                        (                         z
`a†ambijda) LC(im(ϕ)) hgkejnjmi hg khmd efghifjbhikgd VnC €
     žfa zigd bjsjo‚bgm kmqmhikmbbgm efghifjbhikg Vn gigynmhikotp
miht h mxg g|fjlgd im(ϕ) = ϕ(Vn) ⊂ VnC €
     E ¨7-9- -.3*D*6*,08 /6*D2*7 )7- */60 {e } F +5E0/ B V  7- {ϕ(e ) ≡
      F  +5E0/    B   C < 510: -+35E-: .*3*C-D 1 1-:.6*1/0„015½00 .-EB-68*7
                                                 k                 n          k
ek }                Vn                
 )           )
/ 0757>  7- 1--3D0,57A B*17-3-B :-927 .30,0:57> ,* 7-6>1- B*ˆ*/7B*,
,A*  ,- 0 1-:.6*1/,A* E,5)*,08 <


           ie2                                VnC
                           ie1


                             e2

                     e1                       Vn
   )*B0D,-  )7- D68 6‡+-9- B*17-3,-9- .3-/735,/7B5 V /2ˆ*/7B2*7 1-:
.6*1/0„015½08 < 68 ** .-/73-*,08 D-/757-),- BE87> .3-0EB-6>,A* +5E0/A
                                                          n


{ek } B Vn 0 {e0k } B VnC 0 -.3*D*607> -7-+35“*,0* ϕ : Vn → VnC /6*D2‡ˆ0:
-+35E-:~ ϕ(vk ek ) = vk e0k <
   VWXYZY[Y\]Y^ ägdeomvha`avj†amu n pdmfbgxg kmqmhikmbbgxg j``abbgp
xg efghifjbhikj An bjlckjmiht ejfj (ACn , α) w hghigtqjt al n pdmfbgxg
vgdeomvhbgxg j``abbgxg efghifjbhikj AC a j``abbgxg gig|fjymbat
α : A → A     C ijvgxg sig ejfj
                           w             C
                                      (V , α
                                                            n
                                           b : V → VC ) w x m V a VC Ÿ
                                              n
      n          n                        n         n   n         n      n

                                      ©