Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 24 стр.

UptoLike

Составители: 

(a + ib)(x y) = (ax by) (bx + ay).
(V
n
V
n
, +, ·)
ϕ : V
n
3 x 7→ x 0 V
n
V
n
V
n
ϕ(V
n
) = {x 0 |x V
n
} V
n
V
n
x x 0
i · (x 0) = 0 x x y = x + iy
(V
C
n
= V
n
V
n
, ϕ : V
n
V
n
V
n
)
V
n
(A
n
, V
n
, ψ)
A
C
n
A
n
M A
C
n
AM = v V
C
n
A
n
A M A
C
n
{
BM |B A
n
}
A
n
×V
C
n
{A, v} {B, u} v =
AB + u A
C
n
= (A
n
× V
C
n
)/
ψ
C
M, N A
C
n
MN V
C
n
M N
{A, v} {B, w}
MN = v +
AB + w
.-65958
                (a + ib)(x ⊕ y) = (ax − by) ⊕ (bx + ay).
ç*91- .3-B*38*7/8  )7- 73-”15 (V ⊕ V , +, · ) 2D-B6*7B-38*7 B/*: 51/0-
:5: 1-:.6*1/,-9- B*17-3,-9- .3-/735,/7B5< @-,-:-3„0E: B*ˆ*/7B*,,AC
                                 n   n


B*17-3,AC .3-/735,/7B
                     ϕ : Vn 3 x 7→ x ⊕ 0 ∈ Vn ⊕ Vn
.-EB-68*7 -7-“D*/7B07> .3-/735,/7B- Vn / B*ˆ*/7B*,,A: .-D.3-/735,
/7B-: ϕ(Vn) = {x ⊕ 0 | x ∈ Vn} ⊂ Vn ⊕ Vn  -7-“D*/7B688 x ≡ x ⊕ 0 <
’30 ¨7-: i · (x ⊕ 0) = 0 ⊕ x  -712D5 x ⊕ y = x + iy < 510: -+35E-:
                                                    „
(VnC = Vn ⊕ Vn , ϕ : Vn → Vn ⊕ Vn ) F 1-:.6*1/0 015½08 .3-/735,/7
B5 Vn <
   åæ\™š—X ™—W[Y™˜]]™œâ]] œ]\\× WX—˜šXœ\˜š›^ ’30 .-/73-*,00
„2,17-35 1-:.6*1/0„015½00 5„„0,,AC .3-/735,/7B (A , V , ψ) /,5)5
65 ,2“,- BA+357> ,*1-7-3A” „217-3 1-:.6*1/0„015½00 B*17-3,AC .3-
                                                          n  n


/735,/7B < )075*: )7- ¨7- 2“* -/2ˆ*/7B6*,- < @,-“*/7B- ACn ⊃ An .-
/73-0: 0/C-D8 0E 7-9-  )7- 15“D58 7-)15 M ∈ ACn 8B68*7/8 1-,½-: ,*1-
7-3-9- B*17-35 − −→                )
                AM = v ∈ VnC  ,5 56- 1-7-3-9- 6*“07 B An < ’-/1-6>12
7-)15 A .30 ¨7-: :-“*7 +A7> BA+35,5 .3-0EB-6>,-  7- 7-)1* M ∈ ACn
-D,-E,5),- /--7B*7/7B2*7 165// B*17-3-B {− BM | B ∈ An } < 510: -+35E-: 
                                             −→
35//:5730B5*: :,-“*/7B- An × VnC  BB-D0: ,5 ,*: -7,-‰*,0* ¨1B0B56*,7
,-/70 {A, v} ∼ {B, u} ⇐⇒ v = −   AB + u 0 .-6595*: AC
                                  →
                                                      n = (An × Vn )/∼ <
                                                                  C
7-+35“*,0* ψC  -7,-/8ˆ** .53* 7-)*1 M, N ∈ AC B*17-3 −      −→
                                                             M N ∈ VnC 
1-33*17,- -.3*D*68*7/8 /--7,-‰*,08:0~ */60 7-)10 M 0 N E5D5‡7/8  /-
                                                   n


-7B*7/7B*,,-  .535:0 {A, v} 0 {B, w}  7- −
                                           M N = −v + AB + w <
                                            −→        −→




                                   ©´