Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 26 стр.

UptoLike

Составители: 

E
n
(E
n
, g)
g : E
n
× E
n
3 {x, y} 7→ g(x, y) = (x, y) R,
E
n
g(x, y) = g(y, x) x, y E
n
E
n
3 x 7→ g(x, x) R
g(x, x) > 0 x E
n
g(x, x) =
0 x = 0
(E
n
, g) E
m
E
n
g
0
g E
m
g
0
(x, y) = g(x, y) x, y E
m
(E
m
, g
0
)
g
0
(x, x) = g(x, x) > 0 g
0
(x, x) = 0
x = 0
(E
n
, g) (E
0
n
, g
0
)
ϕ : E
n
E
0
n
g
0
(ϕ(x), ϕ(y)) = g(x, y) x, y E
n
.
ϕ :
E
n
E
0
n
(E
n
, g) (E
0
n
, g
0
)
(E
n
, g)
(E
0
n
, g
0
)
è UéêLëNUN TKKLMMNO PQNRSQTMRSUN(
VWXYZY[Y\]Y^ Ækvoangkcd j``abbcd efghifjbhikgd bjlckjmiht j``abp
bgm efghifjbhikg En w jhhg†aafgkjbbgm h mkvoangkcd kmvigfbcd efghifjbp
hikgd (En, g) €
  ì060,*”,58 „-3:5
               g : En × En 3 {x, y} 7→ g(x, y) = (x, y) ∈ R,
-7,-/8ˆ58 .53* B*17-3-B 0C /15683,-* .3-0EB*D*,0*  ,5EAB5*7/8 ghbgkp
bgu 060 dmifasmhvgu „-3:-” *B160D-B5 .3-/735,/7B5 En < ³75 „-3:5 .-
-.3*D*6*,0‡ 2D-B6*7B-38*7 DB2: 2/6-B08:~ Š‹ -,5 /0::*730),5 7- */7>
                                         ‹        ) „
g(x, y) = g(y, x) D68 6‡+AC x, y ∈ En  G 1B5D3570 ,58 -3:5

                          En 3 x 7→ g(x, x) ∈ R
.-6-“07*6>,- -.3*D*6*,5 7- */7> g(x, x) > 0 .30 6‡+-: x ∈ En 0 g(x, x) =
0 ⇐⇒ x = 0 <
   ŽXYZ[—¡Y\]Y^ ž}hi‚ (E , g) Ÿ mkvoangkg efghifjbhikgw j E ⊂ E Ÿ
egnefghifjbhikg a g0 Ÿ gxfjbasmbam `gfdc g bj egnefghifjbhikg Em w
                             n                                    m    n


ig mhi‚ g0(x, y) = g(x, y) not o{|cr x, y ∈ Em € ¢gxnj (Em, g0) Ÿ mkvoangkg
efghifjbhikg€
  £—™œ¤œšY[¥˜š›— -)*B0D,-~ g0(x, x) = g(x, x) > 0 0 g0(x, x) = 0 ⇐⇒
x = 0< 
   VWXYZY[Y\]Y^ ž}hi‚ (E , g) a (E0 , g0) Ÿ nkj mkvoangkj kmvigfbcr efgp
hifjbhikj€ Ølgdgf`ald kmvigfbcr efghifjbhik ϕ : En → E0n bjlckjp
                            n       n


miht algdgf`aldgd mkvoangkcr kmvigfbcr efghifjbhikw mhoa
                  g 0 (ϕ(x), ϕ(y)) = g(x, y) ∀ x, y ∈ En .
   Æhoa h}qmhik}mi algdgf`ald mkvoangkcr kmvigfbcr efghifjbhik ϕ :
                  v n      v
En → E0n w ig mk oa gkc km igfbcm efghifjbhikj (En , g) a (E0n , g 0 ) bjlcp
kj{iht algdgf`bcda€
   ŽXYZ[—¡Y\]Y^ í{|cm nkj mkvoangkcr kmvigfbcr efghifjbhikj (E , g)
a (E0n, g0) gnbgu fjldmfbghia algdgf`bc€
                                                                        n




                                     ©À