Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 28 стр.

UptoLike

Составители: 

{e
i
} ( )
E
n
(g
ij
)
(g
ij
= g(e
i
, e
j
))
det (g
ij
) > 0.
{e
i
0
}
E
n
e
i
0
= p
i
i
0
e
i
G = (g
ij
) G
0
= (g
i
0
j
0
)
P = (p
i
i
0
)
G
0
= P
>
GP
det G
0
= det P
>
det G det P {e
i
0
}
det G
0
= 1 det P
>
= det P (det G)(det P )
2
= 1
x y E
n
−|x||y| 6 (x, y) 6 |x||y|.
x y y = λx
−|λ||x||x| 6 λ(x, x) 6 |λ||x||x|
x y
E
2
= L{x, y} E
n
det
(x, x) (x, y)
(y, x) (y , y)
> 0 (x, x)(y, y) (x, y)
2
> 0 |x|
2
|y|
2
> (x, y)
2
.
(25)
xky
x 6= 0 y 6= 0
1 6
(x, y)
|x||y|
6 1,
    ŽXYZ[—¡Y\]Y^ ž}hi‚ {e } Ÿ |jlah ( bm g|tljimo‚bg gfigbgfdafgkjbbcu)
k mkvoangkgd efghifjbhikm En a (gij ) Ÿ djifa†j hvjotfbgxg efgalkmnmp
                             i


bat k zigd |jlahm (gij = g(ei, ej )) € ¢gxnj
                                  det (gij ) > 0.                              •G²‹
    £—™œ¤œšY[¥˜š›—^ A+*3*: ,*1-7-3A” -37-,-3:03-B5,,A” +5E0/ {e } B
.3-/735,/7B* En  0 .2/7> ei = pii ei < +-E,5)0: G = (gij )  G0 = (gi j ) 
                                                                             0i


P = (pii ) < 51 +A6- BA8/,*,- 35,** •/: < ÂG  / <
                                                  Hà ŠH‹ G0 = P >GP  -712D5
                               0      0                                          0 0




det G0 = det P > det G det P < ’-/1-6>12 {ei } F -37-,-3:03-B5,,A” +5E0/
        0



0  /6*D-B57*6>,-  det G0 = 1  5 det P > = det P  7- (det G)(det P )2 = 1  )7-
                                               0




0 D-15EAB5*7 .3*D6-“*,0* < 
    ŽXYZ[—¡Y\]Y Ê\YXœ›Y\˜š›— á—É]¯îæ\®™—›˜™—Ú—Ì^  ot o{|cr nk}r kmvp
igfgk x a y mkvoangkj efghifjbhikj En kcegobtmiht bmfjkmbhikg
                           −|x||y| 6 (x, y) 6 |x||y|.                          •G¶‹
    £—™œ¤œšY[¥˜š›—^
    Š‹ /60 B*17-3A x 0 y 60,*”,- E5B0/0:A 0 y = λx  7- /--7,-‰*,0* •G¶‹
.30,0:5*7 B0D
                        −|λ||x||x| 6 λ(x, x) 6 |λ||x||x|
0 BA.-6,8*7/8 -)*B0D,A: -+35E-: •-D,- 0E ,*35B*,/7B -15EAB5*7/8 35B*,
/7B-:‹<
   G‹ /60 B*17-3A x 0 y 60,*”,- ,*E5B0/0:A  7- -,0 -+35E2‡7 +5E0/ B
DB2:*3,-: *B160D-B-: .3-/735,/7B* E2 = L{x, y} ⊂ En < -9D5 .- .3*DA
D2ˆ*:2 .3*D6-“*,0‡
      (x, x) (x, y)
det                   > 0 ⇔ (x, x)(y, y) − (x, y)2 > 0 ⇔ |x|2 |y|2 > (x, y)2 .
      (y, x) (y, y)

   ¬[YZ˜š›]Y^ ¹ `gfd}om (25) fjkmbhikg dgymi admi‚ dmhig igo‚vg k
ho}sjmw vgxnj xky € 
   ’30 x 6= 0  y 6= 0 0E •G¶‹ /6*D2*7 )7-
                                      (x, y)
                               −1 6          6 1,
                                      |x||y|
                                          ©Î