ВУЗ:
Составители:
Рубрика:
V
n
A
n
m (m ) A
n
L
m
M
0
A
n
π = {M ∈ A
n
|
−−−→
M
0
M ∈ L
m
}.
m {M
0
, L
m
}
m π = {M
0
, L
m
} M
1
∈ π
{M
1
, L
m
} = {M
0
, L
m
} m π
L
m
M
0
M
M
1
M ∈ {M
1
, L
m
}⇐⇒
−−−→
M
1
M ∈
L
m
⇐⇒
−−−→
M
0
M
1
+
−−−→
M
1
M ∈ L
m
−−−→
M
0
M
1
∈
L
m
(V
n
, +) ⇐⇒
−−−→
M
0
M ∈ L
m
⇐⇒ M ∈ {M
0
, L
m
}
π = {M
0
, L
m
} m
(A
n
, V
n
, ψ) ψ
π
= ψ|π × π : π × π → V
n
.
ψ
π
(π × π) ⊂ L
m
ψ
π
: π × π → L
m
(π, L
m
, ψ
π
) m
A, B ∈ π =⇒
−−→
M
0
A,
−−−→
M
0
B ∈ L
m
=⇒
−→
AB =
−−−→
M
0
B −
−−→
M
0
A ∈ L
m
M
0
A
B
A ∈ π v ∈ L
m
1
◦
B ∈ A
n
−→
AB = v
−−−→
M
0
B =
−−→
M
0
A +
−→
AB ∈ L
m
=⇒ B ∈ π
1
◦
π 2
◦
π
A
n
π ⊂ A
n
L
m
⊂ V
n
(π, L
m
, ψ
π
)
m A
n
m
A
n
m
bgd efghifjbhikm Vn w jhhgaafgkjbbgd h j``abbcd efghifjbhikgd An 
oghvghi{ fjldmfbghia m (m peoghvghi{) k An h bjefjkot{qad egnp
efghifjbhikgd Lm w efgrgntqmu smfml igsv} M0 w bjlckjmiht homn}{qmm
egndbgymhikg k An ~
                                   −−−→
                        π = {M ∈ An | M0 M ∈ Lm }.               
   +-E,5)57> m .6-/1-/7>  +2D*: /6*D20: -+35E-:~ {M , L } <
   XYZ[¡Y\]Y^ }hi ljnjbj m peoghvghi π = {M , L } a M ∈ π 
                                                                     0 m
¢gxnj {M , L } = {M , L } w i mw m peoghvghi π h bjefjkot{qad
                                                               0  m      1
                                                                             egnp
efghifjbhikgd Lm gnbglbjsbg gefmnmotmiht o{|gu hkgmu igsvgu
          1  m           0  m
                                    £¤Y[¥^ M ∈ {M , L } ⇐⇒ −      −−→
                                                                         M1 M ∈
                                    Lm ⇐⇒ M0 M1 +M1 M ∈ Lm 751 151 M0 M1 ∈
                                                                1 m
               M1                             −−−→ −−−→                  −−−→
                                                                           
                     M              Lm 0 (Vn , +) F 932..5 .- /6-*,0 ⇐⇒
                                    M0 M ∈ Lm ⇐⇒ M ∈ {M0 , Lm } < 
   M0                               −−−→
   XYZ[¡Y\]Y^ }hi π = {M , L }  m peoghvghi k j``abbgd efgp
hifjbhikm (An, Vn, ψ) a ψπ = ψ|π × π : π × π → Vn . ¢gxnj
                                      0     m
   ¦ ψ (π × π) ⊂ L aw homngkjimobgw ψ : π × π → L 
   § ¢πfguvj (π, L ,mψ )  j``abbgm efghifjbhikg
                                                π
                                                           fjldmfbghia
                                                               m
                                                                        m
   £¤Y[¥^  2/7> A, B ∈ π =⇒ −
                    m   π
                                                     −→ −−−→             −→
                                                    M0 A, M0 B ∈ Lm =⇒ AB =
                                    M0 B − M0 A ∈ Lm <
                                    −−−→ −−→
                                           2/7>
                                        G          A ∈ π 0 v ∈ Lm < -9D5 /2*
                B
                                    /7B2*7 .- 51/0-:* 1◦  *D0,/7B*,,58 7-)15
                       A                               ) −→           −−−→
                                    B ∈ An 75158  7- AB = v < - M0 B =
     M0
                                    M0 A + AB ∈ Lm =⇒ B ∈ π < 510: -+35
                                    −−→ −→
E-: 51/0-:5 1◦ BA.-6,8*7/8 D68 π < 1/0-:5 2◦ BA.-6,8*7/8 D68 7-)*1 
.30,5D6*50C .6-/1-/70 π  .-/1-6>12 -,5 BA.-6,8*7/8 D68 B/*C 7-)*1
50,,-9- .3-/735,/7B5 An < 
   VWXYZY[Y\]Y^ gndbgymhikg π ⊂ A ijvgmw sig not bmvgigfgxg
Lm ⊂ Vn     ifg uv j  (π, Lm , ψπ ) tkotmiht    j``abbcd
                                                 n
                                                             efghifjbhikgdw bjp
lckjmiht m pdmfbcd egnefghifjbhikgd k An 
   E D-15E5,,-9- BA* .3*D6-*,08 /6*D2*7 )7- m :*3,A:0 .-D.3-
/735,/7B5:0 B An 8B687/8 m .6-/1-/70 ¨7-9- .3-/735,/7B5 0 7-6>1- -,0 <
                                           ©
