Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 43 стр.

UptoLike

Составители: 

Q
e
i
e
i
O
e
n+1
π
n
= A
n
{Q; e
α
}
π
n
x
n+1
= 1 M
π
n
(x
1
, . . . , x
n
; x
n+1
= 1) (x
1
, . . . , x
n
)
{O; e
i
}
Φ A
C
n
A
C
n+1
x
n+1
= 1, a
ij
x
i
x
j
+ 2a
i n+1
x
i
+ a
n+1 n+1
= 0,
x
n+1
= 1, a
ij
x
i
x
j
+ 2a
i n+1
x
i
x
n+1
+ a
n+1 n+1
x
n+1
x
n+1
= 0.
A
n+1
Φ (n 1)
Φ Φ a
αβ
x
α
x
β
= 0
(x
α
0
) (tx
α
0
) t R
M
0
e
Φ
QM
e
Φ
Q
(n 1) Φ
Φ Φ =
e
Φ π
n
                                O
                                                           πn = A n
                                              ei

                              en+1

                                 Q                 ei

   ’30 ¨7-: B /0/7*:* 1--3D0,57 -.3*D*68*:-” 3*.*3-: {Q; eα}  90.*3
.6-/1-/7> πn +2D*7 0:*7> 235B,*,0* xn+1 = 1  5 .3-0EB-6>,58 7-)15 M ∈
πn +2D*7 0:*7> 1--3D0,57A (x1 , . . . , xn ; xn+1 = 1)  9D* (x1 , . . . , xn ) F 1-
-3D0,57A ¨7-” 7-)10 .- -7,-‰*,0‡ 1 3*.*32 {O; ei} < 0.*3.-B*3C,-/7>
Φ ⊂ AC n
          35//:5730B5*:58 151 .-D:,-“*/7B- B ACn+1  E5D5*7/8 /0/7*:-”
235B,*,0”
               xn+1 = 1, aij xi xj + 2ai n+1 xi + an+1 n+1 = 0,                  •²¶‹
1-7-358 ¨1B0B56*,7,5 /0/7*:* 235B,*,0”
         xn+1
               = 1,     i j            i n+1
                       aij x x + 2ai n+1 x x              n+1 n+1
                                                    + an+1 n+1 x   x   = 0.      •²·‹
  7-3-* 0E 235B,*,0” /0/7*:A •²¶‹ E5D5*7 B .3-/735,/7B* An+1 90.*3.-B*3C
,-/7> Φ  ,5EAB5*:2‡ †aoabnfgd ,5.35B68‡ˆ*” (n − 1) :*3,-” .-B*3C
,-/7>‡ Φ < ,5D Φ < 7-3-* 0E 235B,*,0” /0/7*:A •²·‹~ aαβ xαxβ = 0 8B68*7/8
-D,-3-D,A:< /60 ¨7-:2 235B,*,0‡ 2D-B6*7B-38*7 ,*1-7-3A” ,5+-3 )0/*6
(xα0 )  7- 0 ,5+-3 (txα0 ) .30 B/81-: t ∈ R 751“* +2D*7 *:2 2D-B6*7B-387> <
 510: -+35E-: B:*/7* / 15“D-” 7-)1-” M0 90.*3.-B*3C,-/7> Φe /-D*3“07
B/‡ .38:2‡ QM < 0.*3.-B*3C,-/7> Φe ,5EAB5*7/8 vgb}hgd / B*3‰0,-” Q
0 ,5.35B68‡ˆ*” (n − 1) :*3,-” .-B*3C,-/7>‡ Φ <
    0.*3.-B*3C,-/7> .30 ¨7-: .3*D/75B68*7/8 B B0D* .*3*/*)*,08
                          Φ                                            Φ=
e ∩ πn <
Φ




                                         ¼©