Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 45 стр.

UptoLike

Составители: 

e
A = (a
αβ
)
e
A
0
= (a
α
0
β
0
)
F (x
k
) = 0 F
0
(x
k
0
) = 0
Φ
x
α
x
β
x
α
0
x
β
0
e
Φ
e
Φ
π
n
eϕ(w) = a
αβ
(w
α
w
β
)
V
n+1
A
n
w V
n+1
A
n+1
w
i
= p
i
i
0
w
i
0
+ b
i
w
(n+1)
0
, w
n+1
= w
(n+1)
0
.
a
αβ
w
α
w
β
a
αβ
w
α
w
β
= a
ij
w
i
w
j
+ 2a
i n+1
w
i
w
n+1
+ a
n+1 n+1
w
n+1
w
n+1
=
= a
ij
(p
i
i
0
w
i
0
+ b
i
w
(n+1)
0
)(p
j
j
0
w
j
0
+ b
j
w
(n+1)
0
) + 2a
i n+1
(p
i
i
0
w
i
0
+ b
i
w
(n+1)
0
)w
(n+1)
0
+
+a
n+1 n+1
w
(n+1)
0
w
(n+1)
0
= (a
ij
p
i
i
0
p
j
j
0
)w
i
0
w
j
0
+ 2(a
ij
b
j
+ a
i n+1
)p
i
i
0
w
i
0
w
(n+1)
0
+
+(a
ij
b
i
b
j
+ 2a
i n+1
b
i
+ a
n+1 n+1
)w
(n+1)
0
w
(n+1)
0
=
= a
i
0
j
0
w
i
0
w
j
0
+ 2a
i
0
(n+1)
0
w
i
0
w
(n+1)
0
+ a
n+1 n+1
w
(n+1)
0
w
(n+1)
0
= a
α
0
β
0
w
α
0
w
β
0
.
eϕ(w) = a
αβ
(w
α
w
β
)
A
n
(42)
A
n
I(a
11
, . . . , a
n+1 n+1
)
A
n
ϕ eϕ
(42)
@5730½A Ae = (a ) 0 Ae0 = (a )  /-/75B6*,,A* /--7B*7/7B*,,-  0E 1-¨„
„0½0*,7-B 235B,*,0”     235B,*,0” F (xk ) = 0 0 F 0(xk ) = 0  -.3*D*68‡ˆ0C
                  αβ            αβ                   0 0
                                                                                   0


90.*3.-B*3C,-/7> Φ B DB2C 35E60),AC /0/7*:5C 1--3D0,57 8B68‡7/8 -D
,-B3*:*,,- 0 :5730½5:0 /-/75B6*,,A:0 0E 1-¨„„0½0*,7-B .30 .3-0EB*
D*,08C xαxβ 0 xα xβ B 235B,*,08C 90.*3.-B*3C,-/70 Φe < D,51-  .-/1-6>12
                         0       0


/B8E> :*“D2 235B,*,08:0 90.*3.-B*3C,-/7*” 0 /5:0:0 90.*3.-B*3C,-/78
:0 ,* 8B68*7/8 -D,-E,5),-”  5 751“*  .-/1-6>12 1-,2/ Φe :-“*7 /-D*3“57>
.38:-60,*”,A* -+35E2‡ˆ0*  .53566*6>,A* 90.*3.6-/1-/70 πn  :A ,* :-
“*: -7/‡D5 /35E2 E516‡)07>  )7- ϕ(w) e
                                                                     ) „
                                            = aαβ (wα wβ ) F 1B5D3570 ,58 -3
:5 ,5 Vn+1  ,* E5B0/8ˆ58 -7 BA+-35 /0/7*:A 1--3D0,57 B An <
    --3D0,57A B*17-35 w ∈ Vn+1 .30 .3*-+35E-B5,00 1--3D0,57 •²º‹ .3*
-+35E2‡7/8 .- 751-:2 “* E51-,2 •²º‹ .-/1-6>12 ,5)56- 3*.*35 B An+1 ,*
0E:*,8*7/8  7- */7>
                                             0
                   wi = pii wi + bi w(n+1) , wn+1 = w(n+1) .
                                         0
                                                               0          •²»‹         0




’-D/75B688 B aαβ wαwβ BA35“*,08 •²²‹ 0 •²»‹ .-62)5*:~
           aαβ wα wβ = aij wi wj + 2ai n+1 wi wn+1 + an+1 n+1 wn+1 wn+1 =
= aij (pii0 wi + bi w(n+1) )(pjj 0 wj + bj w(n+1) ) + 2ai n+1 (pii0 wi + bi w(n+1) )w(n+1) +
            0                        0           0                     0               0           0           0




   +an+1 n+1 w(n+1) w(n+1) = (aij pii0 pjj 0 )wi wj + 2(aij bj + ai n+1 )pii0 wi w(n+1) +
                             0           0                         0       0                   0           0



                                                                               0           0
                        +(aij bi bj + 2ai n+1 bi + an+1 n+1 )w(n+1) w(n+1) =
                0   0                            0         0                   0           0           0   0
    = ai0 j 0 wi wj + 2ai0 (n+1)0 wi w(n+1) + an+1 n+1 w(n+1) w(n+1) = aα0 β 0 wα wβ .
 510: -+35E-: ϕ(w)    e     = aαβ (wα wβ ) F 1-33*17,- -.3*D*6*,,58 1B5D3570
                                                                              )
,58 „-3:5<
   ӝ]\\Y ]\›œX]œ\𐠿Xœ›\Y\]® Ú]WYXW—›YX×\—˜š] › A ^
   VWXYZY[Y\]Y^ _``abbcd abkjfajbigd }fjkbmbat (42) xaemfegkmfrbg n
                                                                                p
                           n
hia kigfgxg egft vj k efghifjbhikm An bjlckjmiht khtvjt `}bv†at
                             v                                          v
I(a11 , . . . , an+1 n+1 ) gi gz``a†ambigk z igxg }fjkbmbatw lbjsmbam gigfg
                                                                               u
bm dmbtmiht efa ljdmbm j``abbgxg fmemfj k An €
     51 /6*D/7B0* .3*DAD2ˆ0C 35//2“D*,0”  .-62)5*:~
   ŽXYZ[—¡Y\]Y^ Øbkjfajbic vkjnfjiasbcr `gfd ϕ a ϕew jhhg†aafgkjbp
bcr h }fjkbmbamd (42) xaemfegkmfrbghia kigfgxg egftnvjw j admbbgw fjbp
                                            ¼¼