Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 44 стр.

UptoLike

Составители: 

A
n
Φ
Φ
A
n
Φ
e
Φ
{O; e
i
} {O
0
; e
0
i
}
A
n
A
n+1
{Q; e
α
}
{Q; e
α
0
}
e
α
0
= ep
α
α
0
e
α
e
(n+1)
0
=
QO
0
=
QO +
OO
0
= e
n+1
+
OO
0
e
i
0
= p
i
i
0
e
i
, e
(n+1)
0
= e
n+1
+ b
i
e
i
.
b = b
i
e
i
Q
O
0
O
e
n+1
e
(n+1)
0
e
P = (ep
α
α
0
)
ep
i
i
0
= p
i
i
0
ep
α
i
0
= 0
ep
i
(n+1)
0
= b
i
ep
(n+1)
0
(n+1)
0
= 1
e
P =
b
1
P
b
n
0 . . . 0 1
,
P = (p
i
i
0
)
x
α
= ep
α
α
0
x
α
0
A
n+1
x
i
= p
i
i
0
x
i
0
+ b
i
x
n+1
0
, x
n+1
= x
n+1
0
.
               Φ                       An                                 Φ                      An


               Φ                                                          e
                                                                          Φ



   ’*3*C-D2 •²±‹ -7 3*.*35 {O; ei} 1 3*.*32 {O0; e0i} B .3-/735,/7B* An /-
-7B*7/7B2*7 B .3-/735,/7B* An+1 .*3*C-D -7 3*.*35 3*.*35 {Q; eα} 1 3*.*32
{Q; eα }  9D* .3*-+35E-B5,0* +5E0/5 eα = peαα eα 0:**7 B0D •e(n+1) = QO0 =
                                                                      −−→
                      −−→ ‹
      0                                                            0                                  0


QO + OO = en+1 + OO0 ~
                                                                           0
−→ −−→0

                       ei = pii ei , e(n+1) = en+1 + bi ei .
                           0           0                           0
                                                                        •²I‹


                                                          bi ei           O0
                                                       b=
                                       O

                                       en+1                    e(n+1)0
                                                           Q
E 235B,*,0” •²I‹ /6*D2*7 )7- :5730½5 Pe = (epα ) .3*-+35E-B5,08 +5E0/5
0:**7 /6*D2‡ˆ0” B0D~ peii = pii  peαi = 0  pei = αbi  pe(n+1) = 1  7- */7> 
                                                                                    0
                                                                                             0
                               0               0       0
                                                                       (n+1)0           (n+1)0
                                                                               
                                                                         b1
                                        
                                                          P
                                                                  
                                                                         <<
                                   Pe = 
                                        
                                                                  ,
                                                                n 
                                                              b 
                                                       0 ... 0 1
9D* P = (pii ) < ³7-:2 .3*-+35E-B5,0‡ 3*.*35 /--7B*7/7B2*7 .3*-+35E-B5,0*
1--3D0,57 xα = peαα xα •,5)56- 3*.*35 ,* 0E:*,8*7/8‹ B .3-/735,/7B* An+1 
           0
                       0


0:*‡ˆ** B0D
                   0



                                           0
                      xi = pii xi + bi xn+1 , xn+1 = xn+1 .
                                   0
                                                               0      •²º‹              0



                                         ¼´