Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 77 стр.

UptoLike

Составители: 

P
n
= B(O) A
n+1
O π = A
n
A
n+1
V
n
(π) O π
0
= {O, V
n
(π)}
O π
O π
0
B
π
0
(O) = P
n1
(π
0
)
(n 1)
a B(O)
A
B
O
π
π
0
c
a
b
π
0
π =
A
n
A
a B(O)\B
π
0
(O)
A = aπ
h
π
: P
n
\ P
n1
(π
0
) A
n
,
P
n
\ P
n1
(π
0
) A
n
P
n
= A
n
P
n1
(π
0
)
π = A
n
P
n1
(π
0
)
P
n1
(π
0
) P
n
C P
n1
(π
0
) c
B
π
0
(O)
A
n
P
n
P
n
A
n
A
n
P
n1
(π)
P
n
= A
n
A
n1
A
n2
. . . A
0
.
Ý^µ ӝ]\\œ® —ZY[¥ WX—Y™š]›\—Ú— WX—˜šXœ\˜š›œ^
’2/7> Pn = B(O) F /B8E15 .38:AC 5„„0,,-9- .3-/735,/7B5 An+1 / ½*,
73-: B 7-)1* O  π = An F 90.*3.6-/1-/7> B An+1 / ,5.35B68‡ˆ0: .-D
.3-/735,/7B-: Vn(π)  ,* .3-C-D8‰58 )*3*E 7-)12 O  5 π0 = {O, Vn(π)}
F 90.*3.6-/1-/7>  .3-C-D8‰58 )*3*E 7-)12 O 0 .53566*6>,58 π < ’38
:A*  .3-C-D8ˆ0* )*3*E O 0 6*“5ˆ0* B 90.*3.6-/1-/70 π0  -+35E2‡7 /B8E12
Bπ (O) = Pn−1 (π 0 ) F (n − 1) :*3,-* .3-
*170B,-* .3-/735,/7B- <
  0



   /60 .38:58 a ∈ B(O) ,* 6*“07 B 90
.*3.6-/1-/70 π0  7- -,5 .*3*/*15*7 π =                    A        π
               )       
An B -D,-” 7- 1* A < 7,-/8 15“D-” .38
                                                               B
:-” a ∈ B(O)\Bπ (O) 7-)12 A = a∩π  .-
62)0: BE50:,--D,-E,5),-* /--7B*7/7B0*
                0

                                                                    π0
                          0            •Iº ‹            O    c
         hπ : Pn \ Pn−1 (π ) → An ,                        a
,5EAB5*:-* j``abbgu vjfigu<
                                                     b

   7-“D*/7B688 P \ P (π0) ≡ A  .-62)5*: .3*D/75B6*,0* .3-*170B
,-9- .3-/735,/7B5
                      n     n−1        n


                               Pn = An ∪ Pn−1 (π 0 )                 •I»‹
151 5„„0,,-9- .3-/735,/7B5 π = An  D-.-6,*,,-9- :,-“*/7B-: Pn−1(π0) <
³7- :,-“*/7B- Pn−1(π0) 8B68*7/8 90.*3.6-/1-/7>‡ B Pn •-.3*D*6*,0* 90
.*3.6-/1-/70 B .3-*170B,-: .3-/735,/7B* .30B*D*,- ,0“*‹ ,5EAB5*:-”
|mhvgbmsbg }njombbgu 5 751“* bmhg|hikmbbgu 90.*3.6-/1-/7>‡ D68 D5,
,-” 5„„0,,-” 1537A < /8158 7-)15 C ∈ Pn−1(π0)  7- */7> .38:58 c ∈
                                )                              )
Bπ (O)  ,5EAB5*7/8 +*/1-,* ,- 2D56*,,-” 060 ,*/-+/7B*,,-” 7- 1-” 5
                                                                       „
„0,,-9- .3-/735,/7B5 A ⊂ P < -)10 .3-*170B,-9- .3-/735,/7B5 P 
  0




.30,5D6*“5ˆ0* An .30 ¨7-: ,5EAB5‡7 /-+/7B*,,A:0 7-)15:0 5„„0,,-
                             n      n                                  n


9- .3-/735,/7B5 An <
   ’3*D/75B688 .3-*170B,-* .3-/735,/7B- Pn−1(π)  5 E57*: 0 15“D2‡ B,-B>
.-8B68‡ˆ2‡/8 +*/1-,*),- 2D56*,,2‡ 90.*3.6-/1-/7>  B B0D* •I»‹ .-62
)0: D0Eև,17,-* -+Ö*D0,*,0*

                     nP =A ∪A
                          n     n−1    ∪A  n−2 ∪ ... ∪ A .
                                                   0
                                                                     •ºH‹
                                      ÎÇ