Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 80 стр.

UptoLike

Составители: 

a
α
α = 1, . . . , n + 1
A = [a] P
n
{e
α
} A
[a
1
: a
2
: . . . : a
n+1
] = [a
α
]
{e
α
}
{e
α
0
} P
n
[a
1
: a
2
: . . . : a
n+1
] = [a
1
0
: a
2
0
: . . . :
a
(n+1)
0
] [a] P
n
λ R e
α
0
= λe
α
α = 1, . . . , n + 1
e
α
0
= λe
α
a = a
α
e
α
= a
α
0
e
α
0
= a
α
0
λe
α
a
α
= λa
α
0
α = 1, . . . , n + 1
E
β
0
= [e
β
0
]
{e
α
0
}
[
1
0: . . . :
β
1: . . . :
n+1
0 ]
β
{e
α
} e
β
0
= λe
β
λ β
e
α
0
= λ
α
e
α
λ
α
E = [e
1
0
+ e
2
0
+ . . . + e
(n+1)
0
] = [λ
1
e
1
+ λ
2
e
2
0
+ . . . + λ
n+1
e
(n+1)
0
].
[1 : 1 : . . . : 1] [λ
1
: λ
2
: . . . : λ
n+1
]
λ
1
= λ
2
= . . . = λ
n+1
{e
α
0
}
{e
α
} V
n+1
P
n
λ R e
α
0
= λe
α
α =
1, . . . , n + 1
B(V
n+1
)
V
n+1
{e
α
} [e
α
]
A P
n
[e
α
]
[a
α
] {e
α
}
    =0/65 aα  α = 1, . . . , n + 1  -.3*D*6*,,A* / 7-),-/7>‡ D- -D,-B3*:*,,-
9- 2:,-“*,08 ,5 )0/6-  ,5EAB5‡7/8 efgmviakbcda vggf nabjijda 7-)10
A = [a] ∈ Pn -7,-/07*6>,- +5E0/5 {eα } < ’3-*170B,A* 1--3D0,57A 7- 10 A
                                                                           )
+2D*: -+-E,5)57> /6*D2‡ˆ0: -+35E-: [a1 : a2 : . . . : an+1] = [aα] <
      -E,015*7 */7*/7B*,,A” B-.3-/~ B 151-: /62)5* DB5 +5E0/5 {eα} 0 ’2/7>
{eα } -.3*D*68‡7 -D,2 0 72 “* /0/7*:2 .3-*170B,AC 1--3D0,57 B Pn 
7B*7-: 8B68*7/8 /6*D2‡ˆ**
   0




    ŽXYZ[—¡Y\]Y^ ¸ggibg¾mbam [a1 : a2 : . . . : an+1] = [a1 : a2 : . . . :        0       0

                         n                 v            n        v
a(n+1) ] kcegobtmiht ot khmr igsm [a] ∈ Pn igx j a igo‚ g igx jw gx j
       0                                                               n v n
h}qmhik}mi λ ∈ R ijvgmw sig eα = λeα not khmr α = 1, . . . , n + 1 €
    £—™œ¤œšY[¥˜š›—^ Š‹ /60 e = λe  7- a = aαe = aα e = aα λe 
                                                      0

                                                                              0               0


-712D5 aα = λaα D68 B/*C α = 1, . . . , n + 1 <
                                      α   0  α             α        α           α     0
                          0


    G‹ -)15 Eβ = [eβ ] B +5E0/* {eα } 0:**7 1--3D0,57A [0:1 . . . :1:β . . . :n+1
                                                                               0 ]
                                                            )
9D* *D0,0½5 /7-07 ,5 :*/7* / ,-:*3-: β < /60 ¨75 7- 15 0:**7 7510* “*
                      0           0                       0




1--3D0,57A B +5E0/* {eα}  7- eβ = λeβ < .-/6*D,*: /--7,-‰*,00  -D,5
1-  1-¨„„0½0*,7 λ E5B0/07 -7 ,-:*35 ⠍ 7- */7> B*17-3A +5E0/-B /B8E5,A
                                                  0




/--7,-‰*,08:0 eα = λαeα < =7-+A .-15E57>  )7- ,5 /5:-: D*6* B/* 1-¨„
„0½0*,7A λ /-B.5D5‡7 D-/757-),- 35//:-73*7> 7-)12
                              0


             α


           E = [e10 + e20 + . . . + e(n+1)0 ] = [λ1 e1 + λ2 e20 + . . . + λn+1 e(n+1)0 ].

’-/1-6>12 ** 1--3D0,57A [1 : 1 : . . . : 1] 0 [λ1 : λ2 : . . . : λn+1] -7,-/07*6>,-
35//:5730B5*:AC +5E0/-B /-B.5D5‡7 7- λ1 = λ2 = . . . = λn+1 < 
    VWXYZY[Y\]Y^  kj |jlahj {e } a {e } kmvigfbgxg efghifjbhikj V
jhhg†aafgkjbbgxg h efgmviakbcd efghifjbhikgd Pn w bjlgkmd zvkakjombip
                               α          α   0                                   n+1


bcdaw mhoa h}qmhik}mi λ ∈ R ijvgmw sig eα = λeα not khmr α =       0


1, . . . , n + 1 €
     Ðig gibg¾mbam zvkakjombibghia fjl|akjmi dbgymhikg B(V                 n+1 )
                                                                                 khmr
|jlahgk efghifjbhikj Vn+1 bj vojhhc zvkakjombibghia€ äjyncu al vojhp
hgk zvkakjombibghia bjlckjmiht efgmviakbcd fmemfgd € žfgmviakbcu
fmemf w gefmnmotmdcu |jlahgd {eα} g|glbjsjmiht homn}{qad g|fjlgd [eα] €
äggf nabjijda igsva A ∈ Pn gibghaimo‚bg fmemfj [eα] bjlckj{iht mm
vggf nabjic [aα] gibghaimo‚bg |jlahj {e } €
                                             α


                                                              ÎÑ