Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 81 стр.

UptoLike

Составители: 

[e
α
] α = 1, . . . , n + 1 n + 1 E
α
=
p(e
α
) P
n
E
α
[e
α
]
E
α
e
α
λ
α
E = [e
1
+e
2
+. . .+e
n+1
]
[e
α
] [1 : 1 : . . . : 1]
{E
α
; E}
O
E
1
E E
2
e
1
e
2
[e
α
]
{E
α
; E}
E
α
[
1
0: . . . :
α
1: . . . :
n+1
0 ]
E
[1 : 1 : . . . : 1]
h : P
n
R
n+1
\ {0}/ P
n
RP
n
[x
1
: x
2
: . . . : x
n+1
]
π A
n+1
x
n+1
= 1 A
n
P
n
x
n+1
{X
i
= x
i
/x
n+1
} i = 1, . . . , n
[x
1
: x
2
: . . . : x
n+1
] = [X
1
: X
2
: . . . : X
n
: 1] {X
i
} i = 1, . . . , n
A
n
P
n
π = A
n
{Q, e
i
} i = 1, . . . , n Q π
r
Q
=
OQ = e
n+1
   ’3-*170B,A” 3*.*3 [eα]  α = 1, . . . , n + 1  -.3*D*68*7 n + 1 7-)12 Eα =
                                                           )
p(eα ) B .3-/735,/7B* Pn < D,51- -+357,- .- 7- 15: Eα 3*.*3 [eα ] ,* B-//75
,5B60B5*7/8  .-/1-6>12 7-)15:0 Eα 15“DA” 0E B*17-3-B eα -.3*D*68*7/8
/ 7-),-/7>‡ D- 2:,-“*,08 ,5 /B-” :,-“07*6> λα < ³7-7 ,*D-/757-1 :-“,-
2/735,07>  E5D5B *ˆ* -D,2 7-)12 E = [e1 +e2 +. . .+en+1]  1-7-358 B /0/7*:*
1--3D0,57 -.3*D*68*:-” 3*.*3-: [eα]  0:**7 1--3D0,57A [1 : 1 : . . . : 1] <
   5+-3-: 7-)*1 {E ; E} .3-*170B,A” 3*
.*3 [eα] -.3*D*68*7/8 -D,-E,5),- •/:< D-15 E1
                            α
                                                                             E            E2
E57*6>/7B- .3*D6-“*,08‹< ’- ¨7-” .30)0,*
D68 ,5+-35 {Eα; E} 751“* 0/.-6>E2*7/8 ,5
EB5,0* efgmviakbcu fmemf < -)10 Eα  0:*                                         e2
‡ˆ0* 1--3D0,57A [0: . . . :1: . . . : 0 ]  ,5EA
                          1      α       n+1
                                                                e1
                                       )
B5‡7/8 kmf¾abjda fmemfj 5 7- 15 E  0:*
‡ˆ58 1--3D0,57A [1 : 1 : . . . : 1]  ,5EAB5*7                      O
     n
/8 m abasbgu igsvgu<
   ªœY«œ\]Y^ --7B*7/7B0*  -7,-/8ˆ** 7-)1* .3-*170B,-9- .3-/735,/7B5
** 1--3D0,57A -7,-/07*6>,- .3-*170B,-9- 3*.*35 :-“,- 35//:5730B57>
151 0E-:-3„0E: h : Pn → Rn+1 \ {0}/ ∼ .3-/735,/7B5 Pn ,5 /75,D537,-*
.3-*170B,-* .3-/735,/7B- RPn <
   ’3-*170B,A* 1--3D0,57A [x1 : x2 : . . . : xn+1] ,5EAB5‡7/8 751“* gnbgp
fgnbcda vggf nabjijda< 68 5„„0,,-” 1537A •I»‹ -.3*D*68*:-” 90.*3
.6-/1-/7>‡ π ⊂ An+1 / 235B,*,0*: xn+1 = 1  2 7-)*1 0E An ⊂ Pn .-/6*D
,88 1--3D0,575 xn+1 -760),5 -7 ,268  .-¨7-:2 7510* 7-)10 -D,-E,5),-
-.3*D*68‡7/8 )0/65:0 {X i = xi/xn+1}  i = 1, . . . , n < ’30 ¨7-: -)*B0D,- 
[x1 : x2 : . . . : xn+1 ] = [X 1 : X 2 : . . . : X n : 1] < =0/65 {X i }  i = 1, . . . , n  ,5
EAB5‡7/8 bmgnbgfgnbcda vggf nabjijda 7-)*1 0E An ⊂ Pn < *-D,-3-D,A*
1--3D0,57A F ¨7- 5„„0,,A* 1--3D0,57A B π = An -7,-/07*6>,- 5„„0,
,-9- 3*.*35 {Q, ei}  i = 1, . . . , n  9D* Q ∈ π F 7-)15 / 35D02/ B*17-3-:
rQ = OQ = en+1 <
       −→




                                              ÏÕ