Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 83 стр.

UptoLike

Составители: 

e
α
0
= p
α
α
0
e
α
.
[x
α
]
x
α
= p
α
α
0
x
α
0
.
{e
α
} {e
α
0
}
{e
α
}
{
e
e
α
= λe
α
} {e
α
0
} {
e
e
α
0
= λe
α
0
}
e
e
α
0
= ep
α
α
0
e
e
α
ep
α
α
0
= νep
α
α
0
ν = λ/µ (p
α
α
0
)
[P ] = [p
α
β
]
P = (p
α
β
) Q = (q
α
β
) P = λQ λ R
P
n
( )
P
n
eϕ : P
n
P
n
ϕ : V
n+1
V
n+1
V
n+1
V
n+1
\ {0}
ϕ
//
p
V
n+1
\ {0}
p
P
n
eϕ
//
P
n
eϕ
ϕ eϕ = [ϕ]
[e
α
]
[ϕ] : P
n
3 [x] 7→ [y ] P
n
y
α
= ϕ
α
β
x
β
,
/B8E5,A /--7,-‰*,0*:
                                      eα0 = pαα0 eα .                   •º±‹
--7B*7/7B2‡ˆ** .3*-+35E-B5,0* .3-*170B,AC 1--3D0,57 [xα] 0:**7 B0D
                                 xα = pαα xα .       0
                                                         0              •º²‹
  5“DA” 0E +5E0/-B {eα} 0 {eα } -.3*D*68*7/8 /--7B*7/7B2‡ˆ0: .3-*170B
,A: 3*.*3-: / 7-),-/7>‡ D- 2:,-“*,08 ,5 B*ˆ*/7B*,,-* )0/6-~ {eα} ∼
                                  0




 eα = λeα }  {eα } ∼ {e
{e
                                       e = peα ee  7- peα = ν peα  9D*
                         eα = λeα } < /60 e
            510:  -+35E-:   :5730½5         -/2ˆ*/7B68‡ˆ58   .3*-+35E-B5,0*
                 0        0              0     α                 0
                                                      α α      α     α        0   0   0

ν = λ/µ <                          (pα ) 
                                       α
             º² ‹                )
1--3D0,57 •  -.3*D*6*,5 / 7- ,-/7>‡ D- 2:,-“*,08 ,5 ,*,26*B-* B*ˆ*
                                                 0



/7B*,,-* )0/6- <
   @5730½2 E5D5,,2‡ / 7-),-/7>‡ D- 2:,-“*,08 ,5 ,*,26*B-* )0/6-  ,5
EAB5‡7 ehmkngdjifa†mu< -),**  ./*BD-:5730½5 F ¨7- 165// ¨1B0B56*,7
,-/70 :5730½ [P ] = [pαβ] .- /6*D2‡ˆ*:2 -7,-‰*,0‡ ¨1B0B56*,7,-/70~
P = (pαβ ) ∼ Q = (qβα ) ⇐⇒ P = λQ D68 ,*1-7-3-9- λ ∈ R <

Ý^Ý ŽXY—­Xœ¤—›œ\]® ÊZ›]¡Y\]®Ì WX—Y™š]›\—Ú— WX—˜šXœ\˜š›œ Pn ^
VWXYZY[Y\]Y^  kaymbamd ( efgmviakbcd efmg|fjlgkjbamd) efgmviakbgp
xg efghifjbhikj Pn bjlckjmiht algdgf`ald zigxg efghifjbhikj bj hmp
|tw ig mhi‚w ijvgm kljadbggnbglbjsbgm gig|fjymbam ϕe : Pn → Pn w not
vgigfgxg h}qmhik}mi oabmubcu algdgf`ald ϕ : V → V jhhg†ap
                v                                   v  u n+1
                                                             v
afgkjbbgxg km igfbgxg efghifjbhikj Vn+1 ij g w sig gdd}ijiakbj
                                                                 n+1

najxfjddj
                        Vn+1 \ {0}
                                      ϕ     /V
                                               n+1 \ {0}
                                                                        •º¶‹
                          p                                               p
                                                                     
                                             e
                                             ϕ
                          Pn                                 /       Pn

   ’3-*170B,-* .3*-+35E-B5,0* ϕe .-3-“D5*:-* 60,*”,A: .3*-+35E-B5,0
*: ϕ  +2D*: -+-E,5)57> 751“* /6*D2‡ˆ0: -+35E-:~ ϕe = [ϕ] <
      .3-*170B,AC 1--3D0,575C  -.3*D*68*:AC 3*.*3-: [eα]  .3*-+35E-B5
,0* [ϕ] : Pn 3 [x] 7→ [y] ∈ Pn .30,0:5*7 B0D
                                 y α = ϕαβ xβ ,                     •º·‹
                                      Ï©