Аналитическая геометрия. Часть III. Многомерные пространства. Гиперповерхности второго порядка. Шурыгин В.В. - 82 стр.

UptoLike

Составители: 

O
Q
e
1
e
n
e
1
e
n
V
n
(π)
A
n
= π
M = [x]
m π
m
(V
m+1
)
[x] m π
m
(V
m+1
)
x V
m+1
m
π
m
(V
m+1
) [e
α
]
V
m+1
{e
α
}
V
m+1
= L{a
1
, . . . , a
m+1
} {a
A
} A = 1, . . . , m + 1
V
m+1
[x] π
m
(V
m+1
)
x = t
1
a
1
+. . . t
m+1
a
m+1
= t
A
a
A
x
α
= t
1
a
α
1
+. . . t
m+1
a
α
m+1
= t
A
a
α
A
.
m
π
m
(V
m+1
) [t
1
: . . . : t
m+1
] = [t
A
]
π
m
(V
m+1
) [a
A
] A = 1, . . . , m + 1
Ann(V
m+1
) = L{
e
b
1
, . . . ,
e
b
nm
} V
m+1
{
e
b
a
} a = 1, . . . , n m
Ann(V
m+1
) [x] π
m
(V
m+1
)
e
b
a
(x) = 0, a = 1, . . . , n m, b
a
α
x
α
= 0, a = 1, . . . , n m,
b
a
α
e
b
a
{e
α
}
[x
α
] m π
m
(V
m+1
)
P
n
[e
α
] [e
α
0
]
{e
α
} {e
α
0
}
V
n+1
                                                             An = π
                                   en
                          Q                      M = [x]

                                     e1

                                        en

                            O                             Vn (π)
                                          e1


Ý^Û ÒXœ›\Y\]® m¯W[—˜™—˜š] πm(Vm+1) ^
 -)15 [x] .30,5D6*“07 m .6-/1-/70 πm(Vm+1) 7-9D5 0 7-6>1- 7-9D5 1-9D5
B*17-3 x .30,5D6*“07 .-D.3-/735,/7B2 Vm+1 < ’-¨7-:2 235B,*,08 m .6-/
1-/70 πm(Vm+1) B .3-*170B,AC 1--3D0,575C  -.3*D*68*:AC 3*.*3-: [eα] 
0:*‡7 7-7 “* B0D  )7- 0 235B,*,08 .-D.3-/735,/7B5 Vm+1 B +5E0/* {eα} <
   Š< /60 V = L{a , . . . , a }  9D* {a }  A = 1, . . . , m + 1  F +5E0/
B Vm+1  7- [x] ∈ πm(Vm+1) ⇐⇒
               m+1            1      m+1        A




 x = t1 a1 +. . . tm+1 am+1 = tA aA ⇐⇒ xα = t1 aα1 +. . . tm+1 aαm+1 = tA aαA . •
                                                                                   ºŠ‹
  35B,*,08 •ºŠ‹ ,5EAB5‡7/8 ejfjdmifasmhvada 235B,*,08:0 m .6-/1-/70
πm (Vm+1 ) < =0/65 [t1 : . . . : tm+1 ] = [tA ] F .3-*170B,A* 1--3D0,57A B
πm (Vm+1 ) -7,-/07*6>,- .3-*170B,-9- 3*.*35 [aA ]  A = 1, . . . , m + 1 <
   G< /60 Ann(Vm+1) = L{be1, . . . , ben−m} ⊂ Vm+1
                                                  ∗
                                                      9D* {bea}  a = 1, . . . , n − m 
F +5E0/ B Ann(Vm+1)  7- [x] ∈ πm(Vm+1) ⇐⇒
   e a (x) = 0, a = 1, . . . , n − m, ⇐⇒ ba xα = 0, a = 1, . . . , n − m, •ºG‹
   b                                         α

9D* baα F 1--3D0,57A 60,*”,-” „-3:A bea -7,-/07*6>,- +5E0/5 {eα} < 510:
-+35E-: B .3-*170B,AC 1--3D0,575C [xα] m .6-/1-/7> πm(Vm+1) E5D5*7/8
/0/7*:-” -D,-3-D,AC 235B,*,0” •ºG‹<
Ý^Ü ŽXY—­Xœ¤—›œ\]® WX—Y™š]›\× ™——XZ]\œš › Pn ^
’2/7> D5,A DB5 .3-*170B,AC 3*.*35 [eα] 0 [eα ] < ì5E0/A {eα} 0 {eα } 5//-
½003-B5,,-9- B*17-3,-9- .3-/735,/7B5 Vn+1  -.3*D*68‡ˆ0* ¨70 3*.*3A 
                                                     0                       0




                                 Ï