Аналитическая геометрия. Часть II. Аналитическая геометрия пространства. Шурыгин В.В. - 22 стр.

UptoLike

Составители: 

[[a, b], c] = [u, c] =
e
1
e
2
e
3
0 0 a
1
b
2
c
1
c
2
c
3
= a
1
b
2
c
2
e
1
+ a
1
b
2
c
1
e
2
.
(a, c) = a
1
c
1
(b, c) = b
1
c
1
+ b
2
c
2
b(a, c)
a(b, c) = a
1
c
1
(b
1
e
1
+ b
2
e
2
) (b
1
c
1
+ b
2
c
2
)a
1
e
1
= a
1
b
2
c
2
e
1
+ a
1
b
2
c
1
e
2
2
[[a, b], c] + [[b, c], a] + [[c, a], b] = 0.
[a, b] = [b, a]
E
3
[ ·, ·]
([a, b], [c, d]) =
(a, c) (a, d)
(b, c) (b, d)
.
[a, b] = u
([a, b], [c, d]) = (u, [c, d]) = (u, c, d) = ([u, c], d) = ([a, b], c, d) =
([[a, b], c], d) = (b(a, c) a(b, c), d) = (b, d)(a, c) (a, d)(b, c) 2
{a, b}
E
2
= L(a, b) a b
L(S) S V
n
E
2
= L(a, b)
G(a, b) =
(a, a) (a, b)
(b, a) (b, b)
!
.
?+†2+4
                                 e1 e2 e3
          [[a, b], c] = [u, c] = 0 0 a1 b2 = −a1 b2 c2 e1 + a1 b2 c1 e2 .
                                 c1 c2 c3
¬).+ ,+9)3)2-3O (2+ ,0903 (0-27 2+sC)-290 4))2 9 2+(+-2 20.+D s)
9C  )D-292)17+O (a, c) = a1c1 O (b, c) = b1c1 + b2c2  ?+†2+4 b(a, c) −
                                                                                     
a(b, c) = a1 c1 (b1 e1 + b2 e2 ) − (b1 c1 + b2 c2 )a1 e1 = −a1 b2 c2 e1 + a1 b2 c1 e2 2
   ™' h¯ifpqkh !jhmL '
                                                                                           
                       [[a, b], c] + [[b, c], a] + [[c, a], b] = 0.                     <€
   : 2+sC)-290 <€  .+-+-44)2(+-2 [a, b] = −[b, a] O 9).2+++
,+:9)C)3 -1)C)2O (2+ 9).2++) ,+-20-29+ E3 - +,)0‡)D 9).2+B
++ ,+:9)C)3 [ · , · ] +*0:)2 v¹•’xÁ ê -4O 0,4)O ª¨« 13 C+B
.0:02)17-290 2+sC)-290 Û.+* C+-202+(+ ,4)27 F+41 <=
   ' jnŸ©IMhf rIhLokfifMLf ikHg kfjqhIMJg rIhLokfifML¡'
                                                                                           
                          ([a, b], [c, d]) =
                                                (a, c) (a, d)
                                                              .                        <<
                                                (b, c) (b, d)
    ½hjnonqfŸ¾pqkh' +-,+17:)4-3 -9+D-2904 -4)@0++ ,+:9)C)3
 F+41+D <= C13 C9+D++ 9).2+++ ,+:9)C)3  ?-27 [a, b] = u O
2+C0 ([a, b], [c, d]) = (u, [c, d]) = (u, c, d) = ([u, c], d) = ([a, b], c, d) =
                                                                       
([[a, b], c], d) = (b(a, c) − a(b, c), d) = (b, d)(a, c) − (a, d)(b, c) 2
    NJƒLpŸfMLf rŸhãnif¡ k rIhLokhŸ¾Mh¡ pLpqflf jhhIiLMnq'
    ?00 1)D+ ):09-4E 9).2++9 {a, b} +*0:)2 *0:- 0 ,1+-.+-2
                                   (                         
E2 = L(a, b) 1)D03 +*+1+ .0 9).2++9 a  b O -4 +* )) +,)C)1))
1)D+D +*+1+(. L(S) ,+C4+s)-290 S ⊂ Vn 9 ®ŠŠ *+:0(4 -1)CB
A 4 +*0:+4 402‡ -.013++ ,+:9)C)3 0 E2 = L(a, b) 9 †2+4
*0:-) 402‡ 20.++ 9C0 0:90A2 402‡04 040~
                                                            !
                                           (a, a) (a, b)
                            G(a, b) =                           .
                                           (b, a) (b, b)


                                               ÚÚ