Аналитическая геометрия. Часть II. Аналитическая геометрия пространства. Шурыгин В.В. - 20 стр.

UptoLike

Составители: 

a
b
c
h
[a, b]
{e
i
}
(a, b, c) =
a
1
a
2
a
3
b
1
b
2
b
3
c
1
c
2
c
3
.
1
(a, b, c) = (b, c, a) = (c, a, b) = (b, a, c) = (a, c, b) =
(c, b, a)
2
(a, b, c) = (a, [b, c])
3
ε : E
3
× E
3
× E
3
3 {a, b, c} 7→ (a, b, c) R
1
3
2
1
2
                    [a, b]



          c

                                b
          h

                                          a
                                -  ¨
   âhIlHŸn iŸ© kJƒLpŸfML© plfžnMMhKh rIhLokfifML© k rI©lhHKhŸ¾Mh¡
pLpqflf jhhIiLMnq'
   ?-27 {e } ; ,09D +2++4+90D *0:-  +C0
           i

                                    a1 a2 a3
                                                                       
                        (a, b, c) = b1 b2 b3 .                     €>
                                    c1 c2 c3
  Ñ+410 €> - +()9C+-27A -1)C)2 F+41 €›  F+41 C13
9(-1)3 -.013++ ,+:9)C)3 9 ,34++17+D --2)4) .++C02
  ŸKfmInLƒfpjLf pkh¡pqkn plfžnMMhKh rIhLokfifML© '
    
  1◦ (a, b, c) = (b, c, a) = (c, a, b) = −(b, a, c) = −(a, c, b) =
                                    (     
      −(c, b, a) .+-+-44)2 +-27
    
  2◦ (a, b, c) = (a, [b, c])
                             
    
  3◦ 2+*0s))

               ε : E3 × E3 × E3 3 {a, b, c} 7→ (a, b, c) ∈ R
; .+-+-44)2(+) 21)D+) 2+ )-27O 1)D+) ,+ .0sC+4 : 2)E
04)2+9 +2+*0s)) 
   ½hjnonqfŸ¾pqkh' 9+D-290 1◦  3◦ 3913A2-3 ),+-)C-29)4 -1)CB
-2934 F+41 €>  -9+D-29 +,)C)12)1)DO 2◦ -1)C)2 : 1◦  ¬)DB
+-27 -4)@0++ ,+:9)C)3 -1)C)2 20.s) : 1)D+-2 -.013++
 9).2+++ ,+:9)C)D  2

                                     ÚØ