Аналитическая геометрия. Часть II. Аналитическая геометрия пространства. Шурыгин В.В. - 21 стр.

UptoLike

Составители: 

{e
i
} E
3
(a, b, c) = (a
i
e
i
, b
j
e
j
, c
k
e
k
) = a
i
b
j
c
k
(e
i
, e
j
, e
k
) = ε
ijk
a
i
b
j
c
k
,
ε
ijk
= (e
i
, e
j
, e
k
).
1
ε
123
= ε
231
= ε
312
= ε
213
= ε
132
= ε
321
ε
ijk
= 0
(a, b, c) = ε
123
a
1
a
2
a
3
b
1
b
2
b
3
c
1
c
2
c
3
.
ε
ijk
ε
k
ij
ε
ijk
= (e
i
, e
j
, e
k
) = ([e
i
, e
j
], e
k
) = (ε
m
ij
e
m
, e
k
) = (ε
m
ij
e
m
, e
k
) = ε
m
ij
g
mk
.
[[a, b], c] = b(a, c) a(b, c).
a = 0
a 6= 0
{e
1
, e
2
, e
3
} a = a
1
e
1
b = b
1
e
1
+ b
2
e
2
c = c
1
e
1
+ c
2
e
2
+ c
3
e
3
[a, b] = u
u = [a, b] =
e
1
e
2
e
3
a
1
0 0
b
1
b
2
0
= a
1
b
2
e
3
.
   âhIlHŸn iŸ© kJƒLpŸfML© plfžnMMhKh rIhLokfifML© k nššLMMh¡ pLpqfæ
lf jhhIiLMnq'
   ?-27 {e } ; ,+:9+17D *0:- 9 E  +C0
           i                          3

            (a, b, c) = (ai ei , bj ej , ck ek ) = ai bj ck (ei , ej , ek ) = εijk ai bj ck ,
C)
                                        εijk = (ei , ej , ek ).
: 1◦ -1)C)2O (2+ ε = ε = ε = −ε = −ε = −ε O 0 +-2017)
.+†FF‡)2 εijk = 0  2-AC0 ,+1(0)4 -1)CA A F+41~
                    123  231   312     213    132   321



                                                        a1 a2 a3
                                                                                                     
                                (a, b, c) = ε123        b1 b2 b3 .                               €¨
                                                        c1 c2 c3
   hhqMhžfML© pk©oJknçãLf ε L εk '
   4))4~                   ijk ij



      εijk = (ei , ej , ek ) = ([ei , ej ], ek ) = (εm                m               m
                                                     ij em , ek ) = (εij em , ek ) = εij gmk .

™' NfjqhIMJf qh¯ifpqkn L Lg rILlfMfMLf'
  0-2+3 )4 0:C)1) 0--40290A2-3 ).+2+) 2+sC)-29)+ 9,+13B
A )-3 9).2+) 09)-290O -+-2091)) - -,+17:+90)4 -.013++O
9).2+++  -4)@0++ ,+:9)C)DO  ,4))3 †2E 09)-29 9 )+B
4)2 ,+-20-290
   d' ½kh¡Mhf kfjqhIMhf rIhLokfifMLf èqh¯ifpqkh "InpplnMné'
                                                                              
                              [[a, b], c] = b(a, c) − a(b, c).            <=
   ½hjnonqfŸ¾pqkh' -1 a = 0 O 2+ 2+sC)-29+ 9,+13)2-3 +()9C4 +*B
0:+4 -1 a 6= 0 O 2+ 9*0)4 9 ,+-20-29) ,09D +2++4+90B
D *0:- {e1, e2, e3} O ,+ +2+@)A . .+2++4 a = a1e1 O b = b1e1 + b2e2 O
                                  (
c = c1 e1 + c2 e2 + c3 e3 O  9 -13)4 9).2+O 0E+C3 )-3 9 1)9+D  ,09+D
(0-23E 2+sC)-290 - ,+4+ 7A F+41 €› ?-27 [a, b] = u  4))4~
                                        e1 e2 e3
                           u = [a, b] = a1 0 0 = a1 b2 e3 .
                                        b1 b2 0
                                                   Ú×